[go: up one dir, main page]

login
A242503
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 5.
2
1, 0, 5, 7, 15, 49, 71, 196, 394, 753, 1746, 3285, 6865, 14124, 27445, 56661, 111892, 222222, 446524, 876876, 1744353, 3448783, 6782633, 13411528, 26346074, 51799306, 101840098, 199601828, 391637976, 767247094, 1501758784, 2939789022, 5747749147, 11235696151
OFFSET
5,3
COMMENTS
With offset 10 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -5.
LINKS
FORMULA
Recurrence (for n>=9): (n-5)*(n-1)*n*(n+10)*(16*n^4 - 40*n^2 - 9991)*a(n) = -800*(n-6)*(n-1)*(n+1)*(n+9)*(2*n-1)*a(n-1) + 2*n*(16*n^7 + 48*n^6 + 280*n^5 - 1920*n^4 - 11691*n^3 - 5023*n^2 - 167795*n + 7975)*a(n-2) + 2*(n-1)*(n+1)*(2*n-1)*(16*n^5 + 48*n^4 - 16*n^3 + 292*n^2 - 9645*n + 7200)*a(n-3) - (n-4)*n*(n+1)^2*(16*n^4 + 64*n^3 + 56*n^2 - 16*n - 10015)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
Column k=5 of A242498.
Sequence in context: A067589 A373305 A059613 * A116048 A120282 A132094
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved