[go: up one dir, main page]

login
A242399
Write n and 3n in ternary representation and add all trits modulo 3.
8
0, 4, 8, 12, 16, 11, 24, 19, 23, 36, 40, 44, 48, 52, 47, 33, 28, 32, 72, 76, 80, 57, 61, 56, 69, 64, 68, 108, 112, 116, 120, 124, 119, 132, 127, 131, 144, 148, 152, 156, 160, 155, 141, 136, 140, 99, 103, 107, 84, 88, 83, 96, 91, 95, 216, 220, 224, 228, 232
OFFSET
0,2
LINKS
P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, On digital sequences associated with Pascal's triangle, arXiv:2201.06636 [math.NT], 2022.
Eric Weisstein's World of Mathematics, Ternary.
FORMULA
a(n) <= 4*n; a(m) = 4*m iff m is a term of A242407.
a(n) = A008586(n) - A242400(n).
EXAMPLE
n = 25, 3*n = 75:
. A007089(25) = 221
. A007089(75) = 2210
. add trits ----
. modulo 3 2101 = A007089(64), hence a(25) = 64.
PROG
(Haskell)
a242399 n = foldr (\t v -> 3 * v + t) 0 $
map (flip mod 3) $ zipWith (+) ([0] ++ ts) (ts ++ [0])
where ts = a030341_row n
CROSSREFS
Row / column 4 of A325820.
Sequence in context: A311116 A311117 A330973 * A081747 A331061 A020647
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, May 13 2014
STATUS
approved