OFFSET
1,1
COMMENTS
The sequence is divisible by 9 and contains 187 terms. The first term is 45 = 1+2+...+9, the last term is 1+23456789 = 23456790.
The decomposition is not unique, for example 666 = 1+2+3+4+567+89 = 123+456+78+9.
LINKS
Michel Lagneau, Table of n, a(n) for n = 1..187
Michel Lagneau, decompositions of the numbers
EXAMPLE
45 = 1+2+3+4+5+6+7+8+9;
54 = 12+3+4+5+6+7+8+9;
63 = 1+23+4+5+6+7+8+9;
72 = 1+2+34+5+6+7+8+9;
81 = 1+2+3+45+6+7+8+9 = 12+34+5+6+7+8+9;
90 = 1+2+3+4+56+7+8+9 = 12+3+45+6+7+8+9;
99 = 1+2+3+4+5+67+8+9 = 12+3+4+56+7+8+9 = 1+23+45+6+7+8+9.
MAPLE
g:= proc(i, j) option remember;
`if`(i=j, {i}, {parse(cat(seq(h, h=i..j))),
seq(seq(seq(x+y, y=g(h+1, j)), x=g(i, h)), h=i..j-1)})
end:
sort([(g(1, 9) minus {123456789})[]])[]; # Alois P. Heinz, May 09 2014
CROSSREFS
KEYWORD
nonn,base,fini,full
AUTHOR
Michel Lagneau, May 08 2014
STATUS
approved