[go: up one dir, main page]

login
A241902
Decimal expansion of a constant related to Carlitz compositions (A003242).
9
1, 7, 5, 0, 2, 4, 1, 2, 9, 1, 7, 1, 8, 3, 0, 9, 0, 3, 1, 2, 4, 9, 7, 3, 8, 6, 2, 4, 6, 3, 9, 8, 1, 5, 8, 7, 8, 7, 7, 8, 2, 0, 5, 8, 1, 8, 1, 3, 8, 1, 5, 9, 0, 5, 6, 1, 3, 1, 6, 5, 8, 6, 1, 3, 1, 7, 5, 1, 9, 3, 5, 1, 6, 7, 1, 5, 2, 0, 6, 0, 5, 0, 7, 7, 7, 4, 3, 8, 8, 7, 5, 6, 5, 7, 0, 9, 2, 4, 7, 1, 4, 1, 0, 0, 1
OFFSET
1,2
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, p. 201.
A. Knopfmacher and H. Prodinger, On Carlitz compositions, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589.
FORMULA
Equals lim n -> infinity A003242(n)^(1/n).
EXAMPLE
1.7502412917183090312497386246398158787782...
MATHEMATICA
RealDigits[r /. FindRoot[Exp[QPolyGamma[0, 1 + Pi*I/Log[r], r]] == r^(3/2)/(1-r), {r, 3/2}, WorkingPrecision -> 120], 10, 110][[1]] (* Vaclav Kotesovec, Jun 19 2023 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 01 2014
STATUS
approved