[go: up one dir, main page]

login
A241701
Number T(n,k) of Carlitz compositions of n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.
14
1, 1, 1, 2, 1, 2, 2, 3, 4, 4, 8, 2, 5, 13, 5, 6, 21, 12, 8, 33, 27, 3, 10, 50, 53, 11, 12, 73, 98, 31, 15, 106, 174, 78, 5, 18, 150, 296, 175, 22, 22, 209, 486, 363, 72, 27, 289, 781, 715, 204, 8, 32, 393, 1222, 1342, 510, 43, 38, 529, 1874, 2421, 1168, 159
OFFSET
0,4
COMMENTS
No two adjacent parts of a Carlitz composition are equal.
LINKS
FORMULA
Sum_{k=0..floor(n/3)} (k+1) * T(n,k) = A285994(n) (for n>0).
EXAMPLE
T(6,0) = 4: [6], [1,5], [2,4], [1,2,3].
T(6,1) = 8: [4,2], [5,1], [3,1,2], [1,3,2], [1,4,1], [2,3,1], [2,1,3], [1,2,1,2].
T(6,2) = 2: [3,2,1], [2,1,2,1].
T(7,0) = 5: [7], [3,4], [1,6], [2,5], [1,2,4].
T(7,1) = 13: [4,3], [6,1], [5,2], [2,1,4], [4,1,2], [1,4,2], [2,3,2], [3,1,3], [1,5,1], [2,4,1], [1,2,3,1], [1,3,1,2], [1,2,1,3].
T(7,2) = 5: [4,2,1], [2,1,3,1], [3,1,2,1], [1,3,2,1], [1,2,1,2,1].
Triangle T(n,k) begins:
00: 1;
01: 1;
02: 1;
03: 2, 1;
04: 2, 2;
05: 3, 4;
06: 4, 8, 2;
07: 5, 13, 5;
08: 6, 21, 12;
09: 8, 33, 27, 3;
10: 10, 50, 53, 11;
11: 12, 73, 98, 31;
12: 15, 106, 174, 78, 5;
13: 18, 150, 296, 175, 22;
14: 22, 209, 486, 363, 72;
15: 27, 289, 781, 715, 204, 8;
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, expand(
add(`if`(j=i, 0, b(n-j, j)*`if`(j<i, x, 1)), j=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..20);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[If[j == i, 0, b[n-j, j]*If[j<i, x, 1]], {j, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
CROSSREFS
Row sums give A003242.
T(3n,n) = A000045(n+1).
T(3n+1,n) = A129715(n) for n>0.
Sequence in context: A244788 A078660 A239239 * A347662 A060177 A347788
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Apr 27 2014
STATUS
approved