[go: up one dir, main page]

login
A241452
a(n) = pg(3, n) + pg(4, n) + ... + pg(n, n) where pg(m, n) is the n-th m-th-order polygonal number.
5
0, 0, 0, 6, 26, 75, 174, 350, 636, 1071, 1700, 2574, 3750, 5291, 7266, 9750, 12824, 16575, 21096, 26486, 32850, 40299, 48950, 58926, 70356, 83375, 98124, 114750, 133406, 154251, 177450, 203174, 231600, 262911, 297296, 334950, 376074, 420875, 469566, 522366
OFFSET
0,4
FORMULA
a(n) = n*(-10 + 9*n - 4*n^2 + n^3)/4 for n > 1.
G.f.: x^3*(x^3 - 5*x^2 + 4*x - 6)/(x - 1)^5.
E.g.f.: x + exp(x)*x*(x^3 + 2*x^2 + 4*x - 4)/4. - Stefano Spezia, Jun 14 2023
EXAMPLE
a(5) = pg(3, 5) + pg(4, 5) + pg(5, 5) = 15 + 25 + 35 = 75.
PROG
(PARI) pg(m, n) = (n^2*(m-2)-n*(m-4))/2;
v=[]; for(n=0, 50, v=concat(v, sum(m=3, n, pg(m, n)))); v
CROSSREFS
Cf. A241453.
Sequence in context: A135036 A166796 A001701 * A175898 A255870 A286188
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Apr 22 2014
STATUS
approved