[go: up one dir, main page]

login
A241436
Number of 2Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4
1
3, 5, 10, 21, 45, 88, 181, 378, 710, 1460, 2973, 5668, 11567, 23202, 45182, 91386, 182056, 358886, 721278, 1433814, 2843343, 5691577, 11312714, 22494505, 44919750, 89325211, 177819368, 354608529, 705515901, 1405063399, 2799954077, 5572860402
OFFSET
1,1
COMMENTS
Row 2 of A241435
LINKS
FORMULA
Empirical: a(n) = 2*a(n-2) +8*a(n-3) -a(n-4) -10*a(n-5) -18*a(n-6) +8*a(n-7) +20*a(n-8) +20*a(n-9) -24*a(n-10) -22*a(n-11) -a(n-12) +32*a(n-13) +8*a(n-14) -3*a(n-15) -12*a(n-16) +4*a(n-17) -5*a(n-18) -4*a(n-20) -3*a(n-21) +2*a(n-22) for n>24
EXAMPLE
Some solutions for n=4
..3..3..2..2....3..2..3..3....3..3..2..2....3..3..2..3....3..3..2..2
..3..2..1..0....2..2..3..2....2..1..2..0....2..1..1..3....3..2..0..0
CROSSREFS
Sequence in context: A024424 A293321 A284237 * A018107 A360882 A053709
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 22 2014
STATUS
approved