[go: up one dir, main page]

login
A241249
Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4
1
3, 5, 17, 39, 87, 212, 488, 1134, 2644, 6118, 14205, 32964, 76395, 177149, 410798, 952422, 2208198, 5120116, 11871494, 27525169, 63821315, 147978217, 343107782, 795547902, 1844596244, 4276972393, 9916824861, 22993686321, 53314396437
OFFSET
1,1
COMMENTS
Column 2 of A241255
LINKS
FORMULA
Empirical: a(n) = 3*a(n-2) +14*a(n-3) +5*a(n-4) -28*a(n-5) -89*a(n-6) -50*a(n-7) +93*a(n-8) +303*a(n-9) +214*a(n-10) -113*a(n-11) -561*a(n-12) -468*a(n-13) -47*a(n-14) +584*a(n-15) +499*a(n-16) +142*a(n-17) -359*a(n-18) -96*a(n-19) -23*a(n-20) +128*a(n-21) -102*a(n-22) -99*a(n-23) -119*a(n-24) +32*a(n-25) +82*a(n-26) +113*a(n-27) +50*a(n-28) -7*a(n-29) -42*a(n-30) -20*a(n-31) +a(n-32) +4*a(n-33) +a(n-34) for n>37
EXAMPLE
Some solutions for n=4
..3..3....3..3....2..2....2..2....2..2....3..3....3..2....2..2....3..3....2..2
..2..1....2..2....3..1....3..1....3..1....2..1....0..3....3..1....2..2....3..1
..3..1....0..2....0..2....3..1....3..2....0..2....0..2....3..1....3..2....2..1
..3..3....3..2....3..3....3..2....3..2....0..3....0..2....2..1....3..1....2..2
CROSSREFS
Sequence in context: A148517 A148518 A077796 * A067062 A148519 A148520
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 18 2014
STATUS
approved