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This essay bears some resemblance to [1], but comes from a different viewpoint.

Let { : 0 ≤  ≤ 1} denote standard Brownian motion and fix a time 0    1.

The excursion straddling  is { :  ≤  ≤ }, where
 = sup{   :  = 0}  = inf{   :  = 0}

We are interested in the duration − of this excursion, as well as all excursions

staddling earlier times. More precisely, let

 − 1 = #{excursions completed by time  whose durations exceed  − }
 − 1 = #{excursions completed by time  whose durations exceed  − };

we wish to compute the probability that  = 1 (the current excursion, measured

up to time  , has a record duration) and the probability that  = 1 (the current

excursion, measured to its completion, has a record duration). Since  ≥  , it is

clear that  ≥  . Simple scaling arguments show that the distribution of  and

the distribution of  are independent of  .
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erf() =
2√


Z
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exp(−2)  = 1− erfc();

then [2, 3]

P( = ) =

∞Z
0

−()−1()−
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P( = ) =
1

2

∞Z
0

−1(1− −)()−1()−

Numerical integration gives

P( = ) =

⎧⎪⎪⎨⎪⎪⎩
06265075987 if  = 1

01430092516 if  = 2

00630157050 if  = 3

00356483608 if  = 4

P( = ) =

⎧⎪⎪⎨⎪⎪⎩
08003100322 if  = 1

00812481569 if  = 2

00334196946 if  = 3

00184590943 if  = 4

and asymptotic analysis gives, as  →∞,

P( = ) ∼ 2

 2
 P( = ) ∼ 1

 2


It is striking that the current excursion is, with fairly high probability, of duration

greater than all preceding excursions!

Let 1  2  3      0 denote the ranked durations of excursions of. Note

that
P

 = 1 almost surely. The joint probability law of (1 2 3   ) follows what

is called the Poisson-Dirichlet (12 0) distribution. If instead is a Brownian bridge

(meaning that 1 = 0), then the Poisson-Dirichlet (12 12) distribution emerges.

Can numerical results for P() and P() be found in this case? We also wonder

what happens when  is an Ornstein-Uhlenbeck process [4].

Addendum The constant 06265 also appears in [5], as well as the Golomb-

Dickman constant 06243 [6].
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