[go: up one dir, main page]

login
A241021
Smallest prime numbers p of length n having a decimal expansion x(1)x(2)... x(n) such that there exists an index j where x(j) = 1 and x(i) = 9 for i<>j, or 0 if no such prime exists.
2
19, 199, 1999, 99991, 199999, 9999991, 19999999, 0, 9199999999, 99999199999, 991999999999, 9919999999999, 99999999991999, 919999999999999, 9999999999999199, 99919999999999999, 0, 9991999999999999999, 99999199999999999999, 0, 9991999999999999999999
OFFSET
2,1
COMMENTS
The corresponding indices of the decimal digit 1 are 1, 1, 1, 5, 1, 7, 1, 0, 2, 6, 3, 3, 11, 2, 14, 4, 0, 4, 6, 0, 4, ... (A241018).
LINKS
MAPLE
with(numtheory):nn:=80:T:=array(1..nn):
for n from 2 to nn do:
for i from 1 to n do:
T[i]:=9:
od:
ii:=0:
for j from 1 to n while(ii=0)do:
T[j]:=1:s:=sum('T[i]*10^(n-i)', 'i'=1..n):
if type(s, prime)=true
then
ii:=1: printf(`%d, `, s):
else
T[j]:=9:
fi:
od:
if ii=0
then
printf(`%d, `, 0):
else
fi:
od:
MATHEMATICA
Table[SelectFirst[FromDigits/@Table[Insert[PadRight[{}, k, 9], 1, n], {n, k+1}], PrimeQ], {k, 30}]/.Missing["NotFound"]->0 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2017 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Apr 15 2014
STATUS
approved