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All references to notations, lemmas and theorems can be found in the link of A241561 mentioned 

above.  The proofs of Lemmas A & B and the Theorem closely follow those of Lemmas 6 & 7 and 

Theorem 6 stated in the link cited above.

LEMMA A:

Let n = 2m⨯ q = 2m⨯∏ i=1
k piei with m ≥ 0, k ≥ 0, 2 < p1 < … < pk primes, and ei ∈ ℕ, ei ≥ 1, for all 1 ≤ i ≤ k, 

be the prime factorization of n.  Suppose that for all 1 ≤ i ≤ k, ei is even and that for any two odd divisors 
f < g of n, 2m+1⨯ f < g.  Then cn = σ0(q) is odd and wn = 1.

PROOF:

Since every ei, 1 ≤ i ≤ k, is even we get σ0(q) = σ0(∏ i=1
k piei) = ∏ i=1

k (ei + 1) is odd.  Suppose that the odd 

divisors of n are 1 = d1 < … < dx < dx+1 < … < d2 x+1 = q where 2⨯x+1 = σ0(q).  Then dy⨯ d2 x+2-y = q, for 

all 1 ≤ y ≤ x.  By Lemma 1(e) the odd divisors d2 x+1-y, 1 ≤ y ≤ x, are represented by 1’s in positions 

2m+1⨯ dy in the n-th row of irregular triangle A237048.  Therefore, the condition 2m+1⨯ f < g for any two 

odd divisors implies that 1’s in odd and even positions alternate in that row and wn = 1.
■

LEMMA B:

Let n = 2m⨯ q = 2m⨯∏ i=1
k piei with m ≥ 0, k ≥ 0, 2 < p1 < … < pk primes, and ei ∈ ℕ, ei ≥ 1, for all 1 ≤ i ≤ k, 

be the prime factorization of n.  If cn = σ0(q) is odd and wn = 1 then for all 1 ≤ i ≤ k, ei is even, and for 
any two odd divisors f < g of n, 2m+1⨯ f < g.

PROOF:

If k = 0 then n = 2m and its symmetric representation has one region of width 1 (see the comments and 

links in A238443).  Let now k > 0, then n must have at least one odd divisor greater than 1.  Further-
more, since cn = σ0(q) = ∏ i=1

k (ei + 1) is odd all ei,1 ≤ i ≤ k, are even, and there is an odd number of 1’s in 

the n-th row of irregular triangle A237048.  Since wn = 1 the positions of the odd divisors di, 1 ≤ i ≤ σ0(q) 
= 2⨯x+1, represented by 1's in the n-th row of irregular triangle A237048 alternate between odd and 

even positions, i.e.,
1 = d1 < 2m+1

 <  d2 <  2m+1⨯d2 < … < dx < 2m+1⨯dx < dx+1 ≤ rn.
This chain of inequalities holds for all odd divisors since for
di⨯d2 x+2-i = di+1⨯d2 x+1-i = q we get d2 x+1-i < d2 x+2-i so that 

2m+1⨯ d2 x+1-i = 

2m+1⨯ di
di+1

⨯ d2 x+2-i < d2 x+2-i.

■



THEOREM:

For every number n ∈ ℕ with prime factorization n = 2m⨯ q = 2m⨯∏ i=1
k piei with m ≥ 0, k ≥ 0, 2 < p1 < … < 

pk primes, and ei ∈ ℕ, ei ≥ 1, for all 1 ≤ i ≤ k:
cn  is odd & wn = 1  ⇔  n ∈ A241010    

⇔  for all 1 ≤ i ≤ k, ei is even, and for any two odd divisors f < g of n, 2m+1⨯ f < g.

As in the proofs above, let the odd divisors of n be 1 = d1 < … < dx < dx+1 < … < d2 x+1 = q, where 2⨯x+1 

= σ0(q).  The z-th region of n has area az = 

1
2
⨯2m+1 - 1⨯(dz + d2 x+2-z), for 1 ≤ z ≤ 2⨯x+1, so that in this 

case vn = ∑z=1
2 x+1az = ∑z=1

2 x+1 1
2
⨯2m+1 - 1⨯(dz + d2 x+2-z) = 2m+1 - 1 ⨯ ( ∑z=1

x
 (dz + d2 x+2-z) + dx+1) = σ(n).

PROOF:

The equivalences follow from Lemmas A & B. In order to verify the formula for the areas az, 1 ≤ z ≤ 2⨯
x+1, we establish the following identities for the n-th row of irregular triangle E (A235791) that together 
show vn = σ(n) in this case. Since all regions have width 1, their respective areas are  

∑ j=dz
2m+1⨯dz - 1 fn, k = en, dz - en, 2m+1⨯dz, for all 1 ≤ z ≤ x, and 

2⨯ ∑ j=dx+1
rn fn, k - 1 = 2⨯n - ∑ j=1

dx+1-1 fn, k - 1 = 2⨯( n - en, 1 - en, dx+1) - 1 = 2⨯en, dx+1 - 1 =   2m+1 - 1⨯dx+1, 

for the center region ax+1 that crosses the diagonal of the Dyck path.

(i) en, 2m+1⨯dz = en-1, 2m+1⨯dz+ 1 = 

1
2
⨯

q
dz

- 1 - 2m⨯dz + 1

(ii) en, dz = en-1, dz+ 1 = 2m⨯ q
dz

 - 1
2
(dz + 1) + 1

(iii) en, dz- en, 2m+1⨯dz= 

1
2
⨯2m+1 - 1⨯(dz + d2 x+2-z)

(iv) en, dx+1 = 

1
2
⨯2m+1 - 1⨯dx+1 +

1
2

(v) en, k = en-1, k, for all 1 ≤ k ≤ rn with  k ≠ dz, 2m+1⨯dz,

Formulas (i) - (iv) are straightforward calculations.  For (v) we argue as follows.
Let n = u⨯k + v with 0 ≤ v < k. Then

en, k = 
u⨯k + v + 1

k
-
k + 1
2

 = u + 
v + 1
k

-
k + 1
2

 and en-1, k = u + 
v
k
-
k + 1
2

.

If k is odd and k ≠ dz for any 1 ≤ z ≤ x then 
v + 1
k

 = 
v
k
 = 1.

If k is even and k ≠ 2m+1⨯dz for any 1 ≤ z ≤ x then

fn, k = u - k
2
 + 

v + 1
k

-
1
2
 and fn-1, k = u - k

2
 + 

v
k
-
1
2
.

Case 0 ≤ v < 

k
2
:


v + 1
k

-
1
2
 = 0 = 

v
k
-
1
2
 since 2⨯v < k and k even imply 2⨯v + 2 ≤ k.

Case 

k
2
 < v < k:


v + 1
k

-
1
2
 = 1 = 

v
k
-
1
2
 since 0 < 2⨯v - k.

Case 

k
2
 = v:

In this case n = u⨯k + v = u⨯k + 

k
2
 = 

k
2
⨯(2⨯u + 1) so that 2⨯n = 2m+1⨯q = (2⨯u + 1)⨯k.

This implies that 2m+1| k and k =  2m+1⨯dz, for some z, contradicting the assumption on k.
■
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