[go: up one dir, main page]

login
Decimal expansion of zeta'(-2) (the derivative of Riemann's zeta function at -2).
23

%I #15 Aug 22 2015 05:55:52

%S 0,3,0,4,4,8,4,5,7,0,5,8,3,9,3,2,7,0,7,8,0,2,5,1,5,3,0,4,7,1,1,5,4,7,

%T 7,6,6,4,7,0,0,0,4,8,3,5,4,4,9,7,3,9,3,6,2,5,2,9,7,1,8,8,9,8,5,9,0,3,

%U 7,8,1,7,9,4,4,9,3,6,8,9,8,6,7,7,7,9,4,5,8,4,8,8,0,8,7,4,4,9,5,9,7,0,3,6

%N Decimal expansion of zeta'(-2) (the derivative of Riemann's zeta function at -2).

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>.

%F zeta'(-2) = -zeta(3)/(4*Pi^2).

%F Equals -log(A243262). - _Vaclav Kotesovec_, Feb 22 2015

%e -0.030448457058393270780251530471154776647000483544973936252971889859...

%t Join[{0}, RealDigits[-Zeta[3]/(4*Pi^2), 10, 103] // First]

%Y Cf. A084448 (zeta'(-1)), A075700 (zeta'(0)), A073002 (zeta'(2)), A244115 (zeta'(3)).

%K nonn,cons,easy

%O 0,2

%A _Jean-François Alcover_, Aug 05 2014