[go: up one dir, main page]

login
A240602
Recursive palindromes in base 2: palindromes n where each half of the digits of n is also a recursive palindrome.
4
0, 1, 11, 101, 111, 1111, 11011, 11111, 101101, 111111, 1010101, 1011101, 1110111, 1111111, 11111111, 111101111, 111111111, 1101111011, 1111111111, 11011011011, 11011111011, 11111011111, 11111111111, 101101101101, 111111111111, 1011010101101, 1011011101101, 1111110111111, 1111111111111
OFFSET
1,3
COMMENTS
A number n with m digits in base 2 is a member of a(n) if n is a palindrome, and the first floor(m/2) digits of n is already a previous term of a(n). Fast generation of new terms with 2m digits can be done by concatenating the previous terms with m digits twice. Fast generation of new terms with 2m+1 digits can be done by concatenating the previous terms with m digits twice with any single digit in the middle. The smallest palindrome which is not a member of a(n) is 1001.
EXAMPLE
11011 is in the sequence since it is a palindrome of 5 digits, and the first floor(5/2) digits of it, 11, is also a term. 1001 and 10001 are not in a(n) since 10 is not in a(n).
MATHEMATICA
FromDigits /@ Select[IntegerDigits[Range[2^12], 2], And[PalindromeQ@ Take[#, Floor[Length[#]/2]], PalindromeQ[#]] &] (* Michael De Vlieger, Nov 08 2017 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Lior Manor, Apr 13 2014
STATUS
approved