OFFSET
1,3
COMMENTS
A number n with m digits in base 2 is a member of a(n) if n is a palindrome, and the first floor(m/2) digits of n is already a previous term of a(n). Fast generation of new terms with 2m digits can be done by concatenating the previous terms with m digits twice. Fast generation of new terms with 2m+1 digits can be done by concatenating the previous terms with m digits twice with any single digit in the middle. The smallest palindrome which is not a member of a(n) is 1001.
LINKS
Lior Manor, Table of n, a(n) for n = 1..1000
EXAMPLE
11011 is in the sequence since it is a palindrome of 5 digits, and the first floor(5/2) digits of it, 11, is also a term. 1001 and 10001 are not in a(n) since 10 is not in a(n).
MATHEMATICA
FromDigits /@ Select[IntegerDigits[Range[2^12], 2], And[PalindromeQ@ Take[#, Floor[Length[#]/2]], PalindromeQ[#]] &] (* Michael De Vlieger, Nov 08 2017 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Lior Manor, Apr 13 2014
STATUS
approved