[go: up one dir, main page]

login
A240582
Largest absolute value of coefficient in the expression for the discriminant of a generic polynomial of degree n.
0
1, 4, 27, 256, 3750, 77760, 1728720, 55494528, 1948916016, 146502720000, 9131329626090
OFFSET
1,2
REFERENCES
B. L. van der Waerden, Modern Algebra, Ungar, NY, Vol. I, 1953, pp. 82-83.
EXAMPLE
For n=3, f(x) = a x^3 + b x^2 + c x + d, discriminant = b^2 c^2 - 4 a c^3 - 4 b^3 d + 18 a b c d - 27 a^2 d^2. The largest absolute value of a coefficient is 27.
MAPLE
f := proc(n) local x, a, i; maxnorm(discrim(add(a[i]*x^i, i=0..n), x)) end: # Roman Pearce, Aug 29 2014
MATHEMATICA
n = 6;
Table[List @@ Discriminant[Sum[a[j] x^j, {j, 0, i}], x] /. a[_] -> 1 //
Abs // Max, {i, n}]
CROSSREFS
Sequence in context: A301742 A050764 A302108 * A338693 A360776 A360728
KEYWORD
nonn,more
AUTHOR
Albert Lau, Apr 08 2014
EXTENSIONS
a(9)-a(11) from Roman Pearce, Aug 29 2014
STATUS
approved