[go: up one dir, main page]

login
A240250
T(n,k)=Number of nXk 0..3 arrays with no element equal to the sum of elements to its left or the sum of the elements above it or the sum of the elements diagonally to its northwest or the sum of the elements antidiagonally to its northeast, modulo 4
12
3, 6, 6, 14, 0, 14, 32, 8, 0, 32, 72, 40, 16, 0, 72, 164, 152, 162, 44, 0, 164, 372, 540, 688, 536, 122, 0, 372, 844, 1578, 3964, 3530, 2152, 368, 0, 844, 1916, 5912, 16600, 33216, 17476, 8564, 1058, 0, 1916, 4348, 18528, 110134, 189430, 246458, 96752, 29708, 3088
OFFSET
1,1
COMMENTS
Table starts
....3.6....14......32.......72........164........372.........844........1916
....6.0.....8......40......152........540.......1578........5912.......18528
...14.0....16.....162......688.......3964......16600......110134......492060
...32.0....44.....536.....3530......33216.....189430.....2166204....14671432
...72.0...122....2152....17476.....246458....2077950....38186418...396423206
..164.0...368....8564....96752....2043488...26986182...807290260.13612747250
..372.0..1058...29708...508444...16426440..326181996.16596832788
..844.0..3088..111370..2779754..143288058.4661555368
.1916.0..8534..400694.15042466.1177286938
.4348.0.24012.1443716.82159256
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3)
k=2: a(n) = a(n-1) for n>2
Empirical for row n:
n=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3)
n=2: [order 25]
EXAMPLE
Some solutions for n=4 k=4
..2..3..2..1....2..3..2..1....1..3..3..2....2..1..1..1....1..3..3..2
..1..0..0..3....1..0..0..3....2..0..0..1....3..0..2..2....2..0..1..1
..1..2..0..2....1..2..1..1....1..0..0..2....2..0..0..1....1..0..2..1
..1..0..0..3....2..3..0..2....1..2..0..2....2..3..2..1....1..0..3..1
CROSSREFS
Row and column 1 are A238768
Sequence in context: A208796 A319867 A202931 * A239424 A119306 A107972
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 03 2014
STATUS
approved