[go: up one dir, main page]

login
A239586
Prime factor >= other prime factor of n-th brilliant number, cf. A078972.
3
2, 3, 3, 5, 7, 5, 7, 5, 7, 7, 11, 13, 13, 17, 19, 17, 19, 23, 17, 23, 29, 19, 31, 19, 29, 23, 31, 37, 23, 41, 43, 37, 29, 47, 31, 23, 41, 29, 43, 53, 31, 47, 37, 59, 29, 61, 53, 41, 37, 31, 43, 67, 59, 41, 71, 61, 47, 73, 43, 29, 37, 79, 67, 47, 31, 53, 83
OFFSET
1,1
COMMENTS
a(n) = A006530(A078972(n)) = A078972(n) / A239585(n).
A055642(a(n)) = A055642(A239585(n)).
LINKS
Dario Alpern, Brilliant Numbers
EXAMPLE
See A239585.
MATHEMATICA
Table[With[{f = FactorInteger[k]}, If[Total[f[[All, 2]]] == 2 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1, f[[-1, 1]], Nothing]], {k, 1000}] (* Paolo Xausa, Oct 02 2024 *)
dlist2[d_] := Union[Times @@@ Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 2]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *)
Map[FactorInteger[#][[-1, 1]]&, Flatten[Array[dlist2, 2]]] (* Paolo Xausa, Oct 08 2024 *)
PROG
(Haskell)
a239586 n = a078972 n `div` a239585 n
CROSSREFS
Subsequence of A084127.
Sequence in context: A122444 A373751 A066072 * A180611 A084127 A377214
KEYWORD
nonn,look,base
AUTHOR
Reinhard Zumkeller, Mar 22 2014
STATUS
approved