[go: up one dir, main page]

login
A238707
Number T(n,k) of ballot sequences of length n having difference k between the multiplicities of the smallest and the largest value; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
13
1, 1, 0, 2, 0, 0, 2, 2, 0, 0, 4, 3, 3, 0, 0, 2, 14, 6, 4, 0, 0, 12, 14, 35, 10, 5, 0, 0, 2, 69, 71, 69, 15, 6, 0, 0, 30, 97, 295, 195, 119, 21, 7, 0, 0, 44, 251, 751, 929, 421, 188, 28, 8, 0, 0, 86, 671, 2326, 3044, 2254, 791, 279, 36, 9, 0, 0, 2, 1847, 6524, 11824, 8999, 4696, 1354, 395, 45, 10, 0, 0
OFFSET
0,4
COMMENTS
Also the number of standard Young tableaux (SYT) with n cells having difference k between the lengths of the first and the last row.
LINKS
Joerg Arndt and Alois P. Heinz, Rows n = 0..67, flattened
Wikipedia, Young tableau
EXAMPLE
For n=4 the 10 ballot sequences of length 4 and differences between the multiplicities of the smallest and the largest value are:
[1, 2, 3, 4] -> 1-1 = 0,
[1, 1, 2, 2] -> 2-2 = 0,
[1, 2, 1, 2] -> 2-2 = 0,
[1, 1, 1, 1] -> 4-4 = 0,
[1, 1, 2, 3] -> 2-1 = 1,
[1, 2, 1, 3] -> 2-1 = 1,
[1, 2, 3, 1] -> 2-1 = 1,
[1, 1, 1, 2] -> 3-1 = 2,
[1, 1, 2, 1] -> 3-1 = 2,
[1, 2, 1, 1] -> 3-1 = 2,
thus row 4 = [4, 3, 3, 0, 0].
The 10 tableaux with 4 cells sorted by the difference between the lengths of the first and the last row are:
:[1] [1 2] [1 3] [1 2 3 4]:[1 2] [1 3] [1 4]:[1 2 3] [1 2 4] [1 3 4]:
:[2] [3 4] [2 4] :[3] [2] [2] :[4] [3] [2] :
:[3] :[4] [4] [3] : :
:[4] : : :
: -----------0----------- : -------1------- : ----------2---------- :
Triangle T(n,k) begins:
00: 1;
01: 1, 0;
02: 2, 0, 0;
03: 2, 2, 0, 0;
04: 4, 3, 3, 0, 0;
05: 2, 14, 6, 4, 0, 0;
06: 12, 14, 35, 10, 5, 0, 0;
07: 2, 69, 71, 69, 15, 6, 0, 0;
08: 30, 97, 295, 195, 119, 21, 7, 0, 0;
09: 44, 251, 751, 929, 421, 188, 28, 8, 0, 0;
10: 86, 671, 2326, 3044, 2254, 791, 279, 36, 9, 0, 0;
MAPLE
b:= proc(n, l) option remember; `if`(n<1, x^(l[1]-l[-1]),
expand(b(n-1, [l[], 1])+add(`if`(i=1 or l[i-1]>l[i],
b(n-1, subsop(i=l[i]+1, l)), 0), i=1..nops(l))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n-1, [1])):
seq(T(n), n=0..12);
# second Maple program (counting SYT):
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0 or i=1, (p->h(p)*x^(`if`(p=[], 0, p[1]-
p[-1])))([l[], 1$n]), add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))
end:
T:= n->(p-> seq(coeff(p, x, i), i=0..n))(g(n, n, [])):
seq(T(n), n=0..12);
MATHEMATICA
b[n_, l_List] := b[n, l] = If[n<1, x^(l[[1]] - l[[-1]]), Expand[b[n-1, Append[l, 1]] + Sum[If[i == 1 || l[[i-1]] > l[[i]], b[n-1, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n-1, {1}]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 07 2015, translated from Maple *)
CROSSREFS
T(2n,n) gives A244305.
Row sums give A000085.
Sequence in context: A137676 A333755 A238130 * A181111 A353856 A216800
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt and Alois P. Heinz, Mar 03 2014
STATUS
approved