OFFSET
1,4
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 1, and a(n) = 1 only for n = 2, 3, 5, 20. If n > 2, then p(n)*q(k)*r(k) - 1 is prime for some k = 1, ..., n.
(ii) If n > 2 is not equal to 22, then p(n)*q(n)*q(k) - 1 is prime for some k = 1, ..., n. If n > 13, then p(n)*q(k)*q(n-k) - 1 is prime for some 1 < k < n/2.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(5) = 1 since p(5)*q(4)*r(4) + 1 = 7*2*3 + 1 = 43 is prime.
a(20) = 1 since p(20)*q(13)*r(13) + 1 = 627*18*83 + 1 = 936739 is prime.
MATHEMATICA
p[n_, k_]:=PrimeQ[PartitionsP[n]*PartitionsQ[k]*(PartitionsP[k]-PartitionsQ[k])+1]
a[n_]:=Sum[If[p[n, k], 1, 0], {k, 1, n}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 01 2014
STATUS
approved