%I #4 Feb 08 2014 06:42:33
%S 256,1728,1728,11960,19288,11960,84000,221512,221512,84000,589944,
%T 2584128,4248736,2584128,589944,4135648,30171224,82919944,82919944,
%U 30171224,4135648,28986208,351706460,1621147104,2719193212,1621147104
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the maximum plus the upper median minus the lower median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one
%C Table starts
%C ........256.........1728..........11960..........84000..........589944
%C .......1728........19288.........221512........2584128........30171224
%C ......11960.......221512........4248736.......82919944......1621147104
%C ......84000......2584128.......82919944.....2719193212.....89364382296
%C .....589944.....30171224.....1621147104....89364382296...4939887793804
%C ....4135648....351706460....31641923080..2932161164292.272584971093496
%C ...28986208...4095080272...616331002428.95933647220152
%C ..203229696..47706224548.12011356925024
%C .1425235712.556422733920
%C .9994034688
%H R. H. Hardin, <a href="/A237494/b237494.txt">Table of n, a(n) for n = 1..60</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 24] for n>27
%F k=2: [order 80] for n>82
%e Some solutions for n=2 k=4
%e ..0..1..0..2..0....0..1..2..1..2....0..0..2..1..0....0..2..0..0..0
%e ..1..0..2..2..1....1..1..2..0..1....0..3..3..1..0....3..1..0..2..1
%e ..3..1..1..0..1....2..2..0..2..2....2..1..0..0..2....0..3..2..1..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 08 2014