[go: up one dir, main page]

login
A237234
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one
9
81, 268, 268, 928, 984, 928, 2784, 3284, 3284, 2784, 9628, 10888, 12014, 10888, 9628, 28912, 36180, 29456, 29456, 36180, 28912, 100008, 120540, 97862, 83436, 97862, 120540, 100008, 300256, 401520, 269844, 233536, 233536, 269844, 401520, 300256
OFFSET
1,1
COMMENTS
Table starts
......81......268......928.....2784.....9628.....28912....100008.....300256
.....268......984.....3284....10888....36180....120540....401520....1336540
.....928.....3284....12014....29456....97862....269844....926086....2450048
....2784....10888....29456....83436...233536....671080...1919288....5542856
....9628....36180....97862...233536...721854...1737372...5299502...12992080
...28912...120540...269844...671080..1737372...5016852..13078228...34663620
..100008...401520...926086..1919288..5299502..13078228..42143930...92484308
..300256..1336540..2450048..5542856.12992080..34663620..92484308..257895268
.1038560..4448892..8256930.15833748.40059070..93075252.270710424..650555580
.3118208.14811704.22301740.45309424.97555340.252437984.638608676.1691829676
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 8*a(n-2) +24*a(n-4) +8*a(n-6) for n>7
k=2: a(n) = a(n-1) +4*a(n-2) +5*a(n-3) +21*a(n-4) +12*a(n-5) +4*a(n-6) for n>8
k=3: a(n) = 5*a(n-2) +42*a(n-4) -21*a(n-6) -207*a(n-8) for n>13
k=4: [order 13] for n>16
k=5: [order 26] for n>29
k=6: [order 34] for n>40
k=7: [order 56] for n>63
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..1..1....2..0..0..2..1....2..1..0..2..1....2..2..1..0..0
..0..1..2..1..1....1..0..1..2..1....0..0..1..2..2....1..1..0..1..2
..2..1..1..0..0....0..1..2..1..0....0..1..2..1..0....1..1..1..2..2
..1..1..1..0..0....2..2..1..0..1....2..2..1..0..1....2..1..1..2..2
..0..2..2..0..1....1..2..0..0..2....2..1..0..0..2....2..0..0..1..2
CROSSREFS
Sequence in context: A237630 A236746 A236739 * A237227 A206094 A202333
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 05 2014
STATUS
approved