[go: up one dir, main page]

login
A236584
The number of tilings of a 9 X (2n) floor with 2 X 3 hexominoes.
1
1, 1, 1, 5, 11, 19, 45, 105, 219, 475, 1061, 2313, 5027, 11035, 24173, 52793, 115499, 252827, 552981, 1209545, 2646419, 5789563, 12664925, 27706873, 60614235, 132602171, 290087749, 634616521, 1388325507, 3037181147
OFFSET
0,4
COMMENTS
Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
FORMULA
G.f.: (1-x)/(-4*x^3+1-2*x+x^2+2*x^4).
MAPLE
g := (1-x)/(-4*x^3+1-2*x+x^2+2*x^4) ;
taylor(%, x=0, 30) ;
gfun[seriestolist](%) ;
CROSSREFS
Cf. A000079 (5Xn floor), A182097 (6Xn floor), A000244 (7Xn floor), A236583 (8X3n floor)
Sequence in context: A375316 A371668 A337492 * A369547 A072743 A045452
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Jan 29 2014
STATUS
approved