[go: up one dir, main page]

login
A236490
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing columnwise and nonincreasing rowwise
9
81, 583, 583, 3987, 9839, 3987, 26091, 156087, 155757, 26091, 167095, 2339313, 5674353, 2330087, 167095, 1054515, 34149421, 192914141, 192685833, 33951181, 1054515, 6595119, 489696691, 6339553813, 14826588345, 6319589033, 486130993
OFFSET
1,1
COMMENTS
Table starts
.......81.........583............3987..............26091..............167095
......583........9839..........156087............2339313............34149421
.....3987......155757.........5674353..........192914141..........6339553813
....26091.....2330087.......192685833........14826588345.......1098468030593
...167095....33951181......6319589033......1095464601321.....182308906034159
..1054515...486130993....202321147069.....78726807207771...29352647489506731
..6595119..6894201989...6387140371741...5564322438106237.4636588642195617443
.41000659.97206875033.199871719030679.389132366606307561
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 8*a(n-1) -a(n-2) -64*a(n-3) -14*a(n-4) +88*a(n-5) +8*a(n-6) -24*a(n-7)
k=2: [order 30]
Empirical for row n:
n=1: a(n) = 8*a(n-1) -a(n-2) -64*a(n-3) -14*a(n-4) +88*a(n-5) +8*a(n-6) -24*a(n-7)
n=2: [order 34]
EXAMPLE
Some solutions for n=2 k=4
..1..0..0..2..0....1..0..2..1..0....1..0..2..0..2....1..0..1..1..0
..0..1..1..0..2....0..0..0..0..2....0..0..1..0..2....0..0..0..2..1
..1..1..0..1..1....1..0..1..0..2....1..1..1..1..1....0..1..1..0..2
CROSSREFS
Column and row 1 are A235432
Sequence in context: A235742 A236082 A235737 * A235437 A235432 A206064
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 27 2014
STATUS
approved