[go: up one dir, main page]

login
A236325
a(n) = |{0 < k < n: m = phi(k)/2 + phi(n-k)/12 is an integer with m! + prime(m) prime}|, where phi(.) is Euler's totient function.
1
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2, 1, 2, 3, 4, 3, 4, 4, 5, 2, 4, 3, 4, 5, 5, 6, 5, 6, 8, 7, 9, 8, 6, 6, 5, 8, 9, 4, 8, 7, 7, 5, 5, 7, 7, 8, 8, 6, 7, 8, 7, 10, 5, 8, 9, 8, 7, 7, 6, 7, 8, 12, 10, 6, 8, 9, 9, 12, 9, 8, 7, 13
OFFSET
1,16
COMMENTS
It might seem that a(n) > 0 for all n > 14, but a(7365) = 0. If a(n) > 0 infinitely often, then there are infinitely many positive integers m with m! + prime(m) prime.
EXAMPLE
a(10) = 1 since phi(1)/2 + phi(9)/12 = 1/2 + 6/12 = 1 with 1! + prime(1) = 1 + 2 = 3 prime.
a(23) = 1 since phi(10)/2 + phi(13)/12 = 2 + 1 = 3 with 3! + prime(3) = 6 + 5 = 11 prime.
MATHEMATICA
p[n_]:=IntegerQ[n]&&PrimeQ[n!+Prime[n]]
f[n_, k_]:=EulerPhi[k]/2+EulerPhi[n-k]/12
a[n_]:=Sum[If[p[f[n, k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 22 2014
STATUS
approved