[go: up one dir, main page]

login
A235268
Least integer k > n such that n*k/(n+k) is an integer, or 0 if no such k exists.
2
1, 0, 0, 6, 12, 20, 12, 42, 24, 18, 15, 110, 24, 156, 35, 30, 48, 272, 36, 342, 30, 28, 99, 506, 40, 100, 143, 54, 70, 812, 45, 930, 96, 66, 255, 140, 45, 1332, 323, 78, 60, 1640, 56, 1806, 77, 90, 483, 2162, 80, 294, 75, 102, 117, 2756, 108, 66, 140, 114, 783
OFFSET
0,4
REFERENCES
a(3) = 6 because 6 is the smallest k > 3 such that k*3/(k+3) is an integer.
LINKS
FORMULA
For prime p, a(p) = p*(p-1) = A002378(p-1). - Ralf Stephan, Jan 15 2014
MATHEMATICA
a[0]=1; a[n_] := Block[{k, s, x}, s = Reduce[k*n/(k+n) == x && k>n, {k, x}, Integers]; If[s === False, 0, Min[k /. List@ ToRules@s]]]; a/@Range[0, 100] (* Giovanni Resta, Jan 20 2014 *)
PROG
(PARI) a(n)=my(k=n+1); while((n*k)%(n+k)!=0, k=k+1); k \\ Ralf Stephan, Jan 15 2014
CROSSREFS
Cf. A063427.
Sequence in context: A233586 A332543 A348914 * A354931 A105455 A345919
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Jan 05 2014
STATUS
approved