[go: up one dir, main page]

login
A235206
Number of (n+1) X (2+1) 0..7 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
1
1172, 4616, 18444, 76112, 319156, 1374400, 5998924, 26765648, 120643572, 553515168, 2557495628, 11985104432, 56413124340, 268564680000, 1281524215500, 6172279073168, 29750350541044, 144526879218144, 701822038872140
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 15*a(n-1) +23*a(n-2) -1373*a(n-3) +3547*a(n-4) +50847*a(n-5) -236177*a(n-6) -957405*a(n-7) +6739749*a(n-8) +8784137*a(n-9) -112122375*a(n-10) -8734283*a(n-11) +1205207433*a(n-12) -682793243*a(n-13) -8845512699*a(n-14) +8015164257*a(n-15) +45997463512*a(n-16) -47860413548*a(n-17) -173398534628*a(n-18) +175140255652*a(n-19) +476432770592*a(n-20) -402722060848*a(n-21) -936013467040*a(n-22) +551524974720*a(n-23) +1245278007168*a(n-24) -366681768960*a(n-25) -999476834304*a(n-26) +6506053632*a(n-27) +362586931200*a(n-28) +89712230400*a(n-29).
EXAMPLE
Some solutions for n=4:
0 7 0 7 3 4 2 0 1 0 7 1 6 3 5 0 4 5 4 5 6
2 4 2 5 6 2 3 6 2 3 5 4 2 4 1 1 0 6 5 1 7
3 0 3 7 3 4 6 4 5 6 3 7 5 2 4 2 6 7 4 5 6
5 7 5 3 4 0 2 5 1 4 6 5 3 5 2 6 5 1 0 6 2
6 3 6 0 6 7 3 1 2 6 3 7 6 3 5 7 1 2 2 3 4
CROSSREFS
Column 2 of A235212.
Sequence in context: A230946 A225234 A253508 * A302230 A302673 A230706
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 04 2014
STATUS
approved