[go: up one dir, main page]

login
A235097
Number of (n+1) X (7+1) 0..5 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 4, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
1
83224, 117488, 173440, 306532, 556560, 1160340, 2420288, 5516124, 12489280, 29986228, 71750944, 179330796, 449031120, 1166157172, 3047852144, 8233837692, 22446543984, 63085200868, 178987944256, 521842413052, 1533372749568
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 9*a(n-1) +6*a(n-2) -279*a(n-3) +514*a(n-4) +3213*a(n-5) -10656*a(n-6) -15267*a(n-7) +92760*a(n-8) +195*a(n-9) -435144*a(n-10) +318243*a(n-11) +1151658*a(n-12) -1467393*a(n-13) -1629840*a(n-14) +3140943*a(n-15) +944545*a(n-16) -3513288*a(n-17) +172122*a(n-18) +2004312*a(n-19) -330148*a(n-20) -568464*a(n-21) +76440*a(n-22) +65520*a(n-23).
EXAMPLE
Some solutions for n=3:
4 1 4 2 1 2 3 5 3 2 3 0 3 1 3 5 0 5 2 4 3 2 1 2
3 4 3 5 0 5 2 0 2 5 2 3 2 4 2 0 2 3 4 2 5 0 3 0
4 1 4 2 1 2 3 5 3 2 3 0 3 1 3 5 0 5 2 4 3 2 1 2
3 4 3 5 0 5 2 0 2 5 2 3 2 4 2 0 2 3 4 2 5 0 3 0
CROSSREFS
Column 7 of A235098.
Sequence in context: A298437 A190385 A201251 * A125779 A233925 A032752
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 03 2014
STATUS
approved