[go: up one dir, main page]

login
A234522
Decimal expansion of 7^(1/4) - 5^(1/4).
9
1, 3, 1, 2, 2, 7, 7, 8, 0, 4, 7, 6, 5, 6, 5, 2, 0, 1, 2, 9, 9, 3, 3, 3, 3, 5, 1, 3, 5, 2, 8, 4, 6, 7, 7, 7, 6, 5, 4, 8, 1, 1, 0, 3, 4, 6, 5, 4, 7, 9, 1, 2, 7, 2, 6, 7, 0, 8, 6, 2, 0, 8, 3, 4, 4, 0, 7, 5, 5, 2, 7, 4, 1, 9, 9, 6, 8, 3, 0, 0, 5, 8, 4, 8, 7, 1, 8, 1, 4, 2, 1, 1, 5, 5, 6, 5, 0, 1, 7
OFFSET
0,2
COMMENTS
Decimal expansion of maximal value of function beta(n) = sigma(n)^(1/n) - (n+1)^(1/n) for n = 4, where beta(n) is called the beta-deviation from primality of number n (see A234520). Lim_n->infinity beta(n) = 0.
An algebraic integer with degree 16 and minimal polynomial x^16 - 48x^12 - 3896x^8 - 53952x^4 + 16. - Charles R Greathouse IV, Apr 25 2016
FORMULA
EXAMPLE
0.13122778047656520129933335...
MATHEMATICA
RealDigits[N[7^(1/4)-5^(1/4), 100]][[1]] (* Georg Fischer, Apr 04 2020 *)
PROG
(PARI) 7^(1/4) - 5^(1/4) \\ Charles R Greathouse IV, Apr 25 2016
KEYWORD
nonn,cons
AUTHOR
Jaroslav Krizek, Jan 14 2014
EXTENSIONS
a(97) corrected by Georg Fischer, Apr 04 2020
STATUS
approved