%I #4 Dec 17 2013 07:09:08
%S 2400,22020,178704,1768660,15013864,160334028,1417225464,16134545712,
%T 147047775280,1750029730452,16265178436688,198822715540700,
%U 1868774647210040,23183928173193336,219227883708704288
%N Number of (n+1)X(5+1) 0..2 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11
%C Column 5 of A233883
%H R. H. Hardin, <a href="/A233880/b233880.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 390*a(n-2) -63115*a(n-4) +5633508*a(n-6) -311287762*a(n-8) +11395143071*a(n-10) -290608508897*a(n-12) +5364876782159*a(n-14) -73770016903887*a(n-16) +771455610322102*a(n-18) -6226548780129951*a(n-20) +39172372910038001*a(n-22) -193237451888156699*a(n-24) +749448322438960607*a(n-26) -2284924382785662062*a(n-28) +5461859355511846682*a(n-30) -10185644885765121071*a(n-32) +14709447103939892100*a(n-34) -16281042118217455735*a(n-36) +13617119182197701100*a(n-38) -8438611741506693900*a(n-40) +3769223995920232000*a(n-42) -1166605374110880000*a(n-44) +236321446856400000*a(n-46) -28818965889000000*a(n-48) +1865383020000000*a(n-50) -48478500000000*a(n-52)
%e Some solutions for n=3
%e ..0..1..0..2..2..2....0..2..0..0..1..0....1..0..1..2..1..0....0..0..0..0..0..2
%e ..2..2..0..1..0..1....1..0..1..2..0..2....2..2..2..0..2..0....2..1..2..1..2..1
%e ..0..1..2..0..2..0....2..2..0..0..1..2....0..1..0..1..2..1....0..0..2..0..2..0
%e ..2..0..2..1..0..1....1..0..1..2..0..2....0..2..2..0..2..0....1..2..1..0..1..2
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 17 2013