[go: up one dir, main page]

login
A233036
The maximum number of I-tetrominoes that can be packed into an n X n array of squares when rotation is allowed.
4
0, 0, 0, 4, 6, 8, 12, 16, 20, 24, 30, 36, 42, 48, 56, 64, 72, 80, 90, 100, 110, 120, 132, 144, 156, 168, 182, 196, 210, 224, 240, 256, 272, 288, 306, 324, 342, 360, 380, 400, 420, 440, 462, 484, 506, 528, 552, 576, 600, 624, 650, 676, 702, 728, 756, 784, 812, 840, 870, 900, 930, 960, 992, 1024, 1056
OFFSET
1,4
COMMENTS
By de Bruijn's theorem (see the de Bruijn link), an m X n rectangle can't be tiled with I tetrominoes unless m or n is divisible by 4. - Robert Israel, Oct 15 2015
LINKS
N. G. de Bruijn, "Filling boxes with bricks", The American Mathematical Monthly 76 (1969), 37-40.
Wikipedia, Tetromino
FORMULA
From Robert Israel, Oct 15 2015: (Start)
a(4*k) = 4*k^2.
a(2*k+1) = k*(k+1) for k >= 2.
a(4*k+2) = 4*k*(k+1).
G.f.: 2*x^3/((1 + x)*(1 + x^2)*(1 - x)^3) - 2*x^3. (End)
Apparently a(n) = A182568(n+2) for n > 3. - Georg Fischer, Oct 14 2018
MAPLE
0$3, seq(op([4*k^2, 2*k*(2*k+1), 4*k*(k+1), (2*k+1)*(2*k+2)]), k=1..20); # Robert Israel, Oct 15 2015
MATHEMATICA
CoefficientList[Series[2 x^3/((1 + x) (1 + x^2) (1 - x)^3) - 2 x^3, {x, 0, 100}], x] (* Vincenzo Librandi, Oct 15 2015 *)
LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 0, 0, 4, 6, 8, 12, 16, 20}, 70] (* Harvey P. Dale, Dec 16 2018 *)
CROSSREFS
Cf. A233035.
Sequence in context: A076082 A162648 A225512 * A062554 A020225 A310663
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Dec 03 2013
EXTENSIONS
Corrected by Robert Israel, Oct 15 2015
STATUS
approved