OFFSET
0,1
LINKS
I. S. Gradsteyn, I. M. Ryzhik, Table of integrals, series and products, (1980) 8.212
FORMULA
-Ei(-log(2))/log(2), where Ei is the exponential integral function.
Also equals (2*Integral_{x = 0..1/2} log(log(1/x)) dx - log(log(2)))/(2*log(2)).
From Peter Bala, Feb 05 2024: (Start)
Equals 1/log(2) * Integral_{x >= 1} 1/(x * 2^x) dx.
Equals 1/log(4) * Integral_{x = 0..1} 1/(log(2) - log(x)) dx.
Equals Integral_{x >= 1} log(x)/2^x dx = (log(2))^2 * Integral_{x >= 0} x*(2^x) /(2^(2^x)). See Gradsteyn and Ryzhik, Section 8.212, formulas (4) and (16). (End)
EXAMPLE
0.546306835952482741736098769624101388937635539081659135416783399176163689841...
MATHEMATICA
RealDigits[-ExpIntegralEi[-Log[2]]/Log[2], 10, 100] // First
PROG
(PARI) eint1(log(2))/log(2) \\ Charles R Greathouse IV, Dec 02 2013
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Nov 29 2013
STATUS
approved