[go: up one dir, main page]

login
A232567
Number of non-equivalent binary n X n matrices with two nonadjacent 1's.
10
0, 1, 6, 17, 43, 84, 159, 262, 426, 635, 940, 1311, 1821, 2422, 3213, 4124, 5284, 6597, 8226, 10045, 12255, 14696, 17611, 20802, 24558, 28639, 33384, 38507, 44401, 50730, 57945, 65656, 74376, 83657, 94078, 105129, 117459, 130492, 144951, 160190, 177010
OFFSET
1,3
COMMENTS
Also: Number of non-equivalent ways to place two non-attacking wazirs on an n X n board.
Two matrix elements are considered adjacent if the difference of their row indices is 1 and the column indices are equal, or vice versa (von Neumann neighborhood).
This sequence counts equivalence classes induced by the dihedral group D_4. If equivalent matrices are distinguished, the number of matrices is A172225(n).
FORMULA
a(n) = (n^4 + 2*n^2 - 4*n)/16 if n is even; a(n) = (n^4 + 4*n^2 - 8*n + 3)/16 if n is odd.
G.f.: x * (1 + x + x^2)*(1 + 3*x - x^2 + x^3) / ((1 + x)^3*(1 - x)^5). - Bruno Berselli, Nov 28 2013
EXAMPLE
There are a(3) = 6 non-equivalent 3 X 3 matrices with two nonadjacent 1's (and no other 1's):
[1 0 0] [0 1 0] [1 0 0] [0 1 0] [1 0 1] [1 0 0]
|0 0 0| |0 0 0| |0 1 0| |1 0 0| |0 0 0| |0 0 1|
[0 0 1] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
PROG
(PARI) x='x+O('x^99); concat(0, Vec(x*(1+x+x^2)*(1+3*x-x^2+x^3)/((1+x)^3*(1-x)^5))) \\ Altug Alkan, Mar 14 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Nov 26 2013
STATUS
approved