[go: up one dir, main page]

login
A232537
Primes p of the form penta(n)-3, where penta(n) is the n-th pentagonal number.
1
2, 19, 67, 89, 173, 373, 587, 1423, 2377, 2749, 2879, 4027, 4507, 4673, 5189, 6899, 7523, 8623, 9319, 10289, 12373, 12647, 13487, 14947, 15859, 17117, 18757, 19777, 20123, 21179, 24509, 25673, 27673, 28909, 29327, 32779, 34123, 38317, 39769, 47969, 52919, 54623
OFFSET
1,1
COMMENTS
The n-th pentagonal number is (3*n^2-n)/2 = n*(3*n-1)/2.
LINKS
EXAMPLE
a(2)= 19: n= 4: (3*n^2-n)/2-3= 19, which is prime.
a(6)= 373: n= 16: (3*n^2-n)/2-3= 373, which is prime.
MAPLE
KD:= proc() local a, b; a:= (3*n^2-n)/2; b:=a-3; if isprime(b) then RETURN (b): fi; end: seq(KD(), n=1..500);
MATHEMATICA
Select[Table[(n(3n-1))/2-3, {n, 2, 200}], PrimeQ] (* Harvey P. Dale, Jul 11 2015 *)
CROSSREFS
Cf. A000326 (pentagonal numbers), A000040 (primes).
Sequence in context: A042149 A218547 A365494 * A309341 A079773 A217082
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Nov 25 2013
STATUS
approved