[go: up one dir, main page]

login
A231984
Decimal expansion of the solid angle (in deg^2) of a spherical square having sides of one degree.
6
9, 9, 9, 9, 7, 4, 6, 1, 6, 4, 3, 9, 2, 7, 8, 6, 5, 4, 3, 2, 1, 9, 8, 5, 0, 9, 4, 7, 8, 4, 9, 6, 8, 2, 2, 5, 5, 1, 7, 9, 5, 9, 1, 5, 2, 4, 1, 8, 5, 7, 6, 4, 5, 2, 7, 4, 0, 6, 4, 6, 7, 2, 8, 4, 2, 8, 1, 4, 8, 7, 7, 7, 6, 0, 7, 1, 7, 3, 3, 6, 5, 8, 1, 8, 1, 5, 1, 7, 6, 0, 5, 8, 9, 6, 7, 7, 1, 4, 7, 6, 7, 1, 4, 5, 7
OFFSET
0,1
COMMENTS
See the comments to A231983 which will make it clear why on a sphere the solid angle of a square with one degree arc-length side is not exactly one deg^2. The correct value, shown here, is A231983*A231981.
REFERENCES
G. V. Brummelen, Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry, Princeton University Press, 2012, ISBN 978-0691148922.
LINKS
Wikipedia, Solid angle, Section 3.3 (Pyramid)
Wikipedia, Square degree
Wikipedia, Steradian
FORMULA
4*arcsin(sin(R/2)sin(S/2))*(180/Pi)^2, where R = S = Pi/180.
EXAMPLE
0.9999746164392786543219850947849682255179591524185764527406467...
MATHEMATICA
RealDigits[4*ArcSin[Sin[Pi/360]^2](180/Pi)^2, 10, 120][[1]] (* Harvey P. Dale, Aug 20 2017 *)
PROG
(PARI)
default(realprecision, 120);
4*asin(sin(Pi/360)^2)*(180/Pi)^2 \\ Rick L. Shepherd, Jan 28 2014
CROSSREFS
Cf. A000796 (Pi), A072097 (rad/deg), A019685 (deg/rad), A231981 (sr/deg^2), A231982 (deg^2/sr), A231983 (this constant in sr), A231987 (for square with 1 rad side), A231985, A231986.
Sequence in context: A111691 A093409 A111692 * A346436 A346583 A346570
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, Nov 17 2013
STATUS
approved