[go: up one dir, main page]

login
A231978
Numbers the squares of which are in A231558.
1
59, 103, 193, 229, 251, 313, 431, 761, 929, 1019, 1087, 1279, 1367, 1423, 1447, 1597, 1721, 1783, 1867, 2237, 2243, 2999, 3083, 3119, 3169, 3229, 3467, 3673, 3847, 3853, 3889, 3943, 4057, 4091, 4153, 4219, 4273, 4519, 4751, 4787, 5039, 5119, 5471, 5573
OFFSET
1,1
COMMENTS
Prime p is in the sequence, if and only if p, p^2, p^3, p^4, p^2+1 and p^2+p all are odious (A000069). We conjecture that the sequence contains also composite numbers, but the first one should be very large.
LINKS
FORMULA
A230500((a(n)+1)/2)>=4.
EXAMPLE
59^2=3481 is odious together with 59, 59^3=205379, 59^4=12117361, 59^2+1=3482 and 59^2 + 59=3540. Thus 59 is in the sequence.
MATHEMATICA
odiousQ[n_]:=OddQ[DigitCount[n, 2][[1]]]; selQ[n_]:=Apply[And, Map[odiousQ, Flatten[Map[{n+#, n*#, n/ #}&, Divisors[n]]]]]; Sqrt[Select[Range[3, 5000]^2, (!PrimeQ[#]) && OddQ[#] && odiousQ[#] && selQ[#]&]] (* Peter J. C. Moses, Nov 16 2013 *)
CROSSREFS
Sequence in context: A106869 A147092 A142298 * A180947 A060259 A141934
KEYWORD
nonn,base
AUTHOR
STATUS
approved