[go: up one dir, main page]

login
A231785
T(n,k)=Number of nXk 0..2 arrays with no element having a strict majority of its horizontal and vertical neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions)
8
1, 1, 1, 3, 17, 3, 8, 74, 74, 8, 21, 315, 854, 315, 21, 55, 1343, 9892, 9892, 1343, 55, 144, 5734, 115110, 304889, 115110, 5734, 144, 377, 24495, 1339532, 9409503, 9409503, 1339532, 24495, 377, 987, 104655, 15587828, 290382196, 769212993, 290382196
OFFSET
1,4
COMMENTS
Table starts
....1.......1...........3...............8..................21
....1......17..........74.............315................1343
....3......74.........854............9892..............115110
....8.....315........9892..........304889.............9409503
...21....1343......115110.........9409503...........769212993
...55....5734.....1339532.......290382196.........62871566958
..144...24495....15587828......8961583206.......5138796600020
..377..104655...181392458....276566915938.....420019667031805
..987..447152..2110829288...8535237276423...34330314343879137
.2584.1910521.24563317752.263409237229182.2805988700231638418
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -a(n-2) for n>3
k=2: a(n) = 6*a(n-1) -8*a(n-2) +2*a(n-3) +3*a(n-4) -a(n-5) for n>6
k=3: [order 21] for n>22
k=4: [order 80] for n>81
EXAMPLE
Some solutions for n=3 k=4
..0..1..1..0....0..0..0..1....0..2..1..0....0..1..2..2....0..0..0..0
..0..0..2..0....0..0..2..1....2..2..1..0....0..0..0..1....2..1..0..1
..1..0..2..2....1..1..1..1....2..0..1..2....2..1..1..1....2..1..0..0
CROSSREFS
Column 1 is A001906(n-1)
Sequence in context: A174506 A109216 A090478 * A195421 A140446 A124689
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 13 2013
STATUS
approved