[go: up one dir, main page]

login
Number of (n+1) X (1+1) 0..2 arrays with no element equal to a strict majority of its horizontal, vertical, diagonal and diagonal neighbors, with values 0..2 introduced in row major order.
1

%I #9 Sep 28 2018 12:02:21

%S 9,57,414,2942,20996,150012,1071848,7659800,54741648,391224688,

%T 2796005280,19982550880,142811894848,1020652809152,7294436846208,

%U 52132137724288,372579805702400,2662766563813120,19030354564815360

%N Number of (n+1) X (1+1) 0..2 arrays with no element equal to a strict majority of its horizontal, vertical, diagonal and diagonal neighbors, with values 0..2 introduced in row major order.

%H R. H. Hardin, <a href="/A231310/b231310.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) - 2*a(n-2) - 24*a(n-3) - 40*a(n-4) + 16*a(n-5).

%F Empirical g.f.: x*(9 - 15*x - 24*x^2 - 40*x^3 + 16*x^4) / (1 - 8*x + 2*x^2 + 24*x^3 + 40*x^4 - 16*x^5). - _Colin Barker_, Sep 28 2018

%e Some solutions for n=3:

%e ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1

%e ..1..0....0..2....0..2....2..1....1..2....1..2....2..0....1..0....2..0....2..0

%e ..1..2....1..2....2..2....0..0....1..0....0..2....2..0....2..0....2..0....1..0

%e ..0..2....0..1....1..1....1..2....2..1....0..2....2..1....0..1....0..2....1..0

%Y Column 1 of A231315.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 07 2013