[go: up one dir, main page]

login
A231285
T(n,k)=Number of nXk 0..3 arrays x(i,j) with each element horizontally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4, and upper left element zero
10
0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 8, 0, 0, 0, 26, 76, 66, 0, 0, 0, 118, 834, 1170, 400, 0, 0, 0, 522, 9488, 34786, 18208, 2722, 0, 0, 0, 2310, 105962, 1083188, 1400418, 278758, 17688, 0, 0, 0, 10234, 1179364, 31513702, 113949472, 56442770, 4294812, 117026, 0
OFFSET
1,8
COMMENTS
Table starts
.0.0......0........0...........0...............0..................0
.0.0......2........6..........26.............118................522
.0.0......8.......76.........834............9488.............105962
.0.0.....66.....1170.......34786.........1083188...........31513702
.0.0....400....18208.....1400418.......113949472.........8501873308
.0.0...2722...278758....56442770.....12128733980......2336016267460
.0.0..17688..4294812..2276141330...1290580702666....640923626812310
.0.0.117026.66052162.91775666754.137311555002556.175842069555560942
LINKS
FORMULA
Empirical for column k:
k=3: a(n) = 4*a(n-1) +17*a(n-2)
k=4: a(n) = 9*a(n-1) +86*a(n-2) +190*a(n-3) -29*a(n-4) +a(n-5)
k=5: [order 10] for n>11
k=6: [order 30] for n>31
k=7: [order 55] for n>57
Empirical for row n:
n=2: a(n) = 4*a(n-1) +a(n-2) +4*a(n-3) for n>4
n=3: [order 19] for n>21
EXAMPLE
Some solutions for n=3 k=4
..0..1..2..1....0..1..2..3....0..1..2..1....0..1..0..3....0..1..2..3
..0..3..1..2....0..3..0..3....0..3..0..3....2..3..0..3....0..1..0..1
..3..0..3..2....0..1..2..1....2..1..0..3....2..1..2..1....0..3..2..1
CROSSREFS
Row 2 is A230245(n-1)
Sequence in context: A066503 A057385 A231108 * A268729 A182317 A158801
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 06 2013
STATUS
approved