[go: up one dir, main page]

login
A231257
Number of (n+1) X (2+1) 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.
1
3, 15, 89, 547, 3381, 20911, 129329, 799835, 4946509, 30591143, 189187465, 1170008467, 7235785189, 44748896799, 276744502881, 1711495152971, 10584548667901, 65458946997783, 404823472069561, 2503585087356803
OFFSET
1,1
COMMENTS
Column 2 of A231263.
LINKS
FORMULA
Empirical: a(n) = 10*a(n-1) -29*a(n-2) +36*a(n-3) -16*a(n-4).
Empirical g.f.: x*(1 - 2*x)*(3 - 9*x + 8*x^2) / ((1 - x)*(1 - 9*x + 20*x^2 - 16*x^3)). - Colin Barker, Feb 16 2018
EXAMPLE
Some solutions for n=3:
..0..0..0....0..0..1....0..0..1....0..0..0....0..0..1....0..0..1....0..0..0
..0..0..1....0..1..2....0..1..2....0..0..0....0..1..2....0..1..0....1..1..1
..0..1..1....1..2..0....1..2..2....0..0..0....1..2..1....1..0..0....0..0..2
..1..1..1....2..0..0....2..2..2....0..0..0....2..1..1....0..0..0....0..2..2
CROSSREFS
Sequence in context: A365128 A127785 A287511 * A074541 A368974 A074550
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 06 2013
STATUS
approved