[go: up one dir, main page]

login
A230606
Numbers n such that sigma(n) = k*(n+1) for some integer k.
3
2, 3, 5, 7, 11, 13, 17, 19, 20, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 104, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
OFFSET
1,1
COMMENTS
Numbers n such that A108775(n) = floor(sigma(n) / n) = sigma(n) mod n = A054024(n).
Union primes (A000040) and composite numbers A045768 (k = 1 for primes p, k = 2 for composite numbers).
LINKS
EXAMPLE
20 is in sequence because sigma(20) = 42 = 2*21.
MATHEMATICA
Select[Range[300], Divisible[DivisorSigma[1, #], #+1]&] (* Harvey P. Dale, May 28 2019 *)
CROSSREFS
Cf. A000203(sigma(n)), A054024 (sigma(n) mod n), A108775.
Cf. A045768 (sigma(n) == 2 (mod n)).
Sequence in context: A152073 A331046 A329150 * A117289 A339817 A328513
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Nov 29 2013
EXTENSIONS
Example clarified by Harvey P. Dale, May 28 2019
STATUS
approved