OFFSET
1,3
COMMENTS
Cimadevilla proved that a(n) >= 0. That is surprising because d(8*i+1) - d(2*i+1) < 0 for i = 12, 17, 22, 24, 31, 32, 40, 42, 45, 49, 52, 57, 66, 67, 71, 72, 77, 80, 82, 84, 85, ...
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Jorge Luis Cimadevilla Villacorta, Certain inequalities associated with the divisor function, Amer. Math. Monthly, 120 (2013), 832-837. See inequalities (1.5).
FORMULA
a(n) = log(2) * n + O(n^(1/3)*log(n)). - Amiram Eldar, Apr 12 2024
EXAMPLE
The divisors of 8*1 + 1 = 9 are 1, 3, 9 and those of 2*1 + 1 = 3 are 1, 3, so a(1) = d(9) - d(3) = 3 - 2 = 1.
MATHEMATICA
Table[Sum[ DivisorSigma[0, 8 i + 1] - DivisorSigma[0, 2 i + 1], {i, n}], {n, 100}]
PROG
(PARI) a(n) = sum(i=1, n, numdiv(8*i+1) - numdiv(2*i+1)); \\ Michel Marcus, Jun 19 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Oct 20 2013
STATUS
approved