OFFSET
1,2
COMMENTS
A natural generalization of highly composite numbers (A002182), which is a subsequence of this sequence.
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..1000
EXAMPLE
8 is in the sequence because remainder 0 occurs 4 times during division 8 by 1, 2, 3, 4, 5, 6, 7, 8, that is more than other remainders.
9 is not in the sequence because both remainders 0 and 1 occur 3 times during division 9 by 1, 2, 3, 4, 5, 6, 7, 8, 9.
MAPLE
rem0:=proc(n) local r, n1, i, mx, f, R;
n1:=`if`(n mod 2 = 0, n/2-1, (n-1)/2);
R:=Array(0..n1, fill=1):if n mod 2 = 0 then R[0]:=2 fi:
for i to n1 do r:=n mod i: R[r]:=R[r]+1 od:
mx:=R[0]:f:=true:
for i to n1 do
if R[i]>= mx then f:=false:break fi od:
f; end;
for n do if maxrem(n) then print(n) fi od:
MATHEMATICA
Select[Range[256], (r = (Transpose@Tally@Mod[#, Range@#])[[2]])[[1]] > Max@Rest@r &] (* Ivan Neretin, Nov 13 2016 *)
zmoQ[n_] := Module[{r = Sort[Tally[Mod[n, Range[n]]]], mx}, mx = Select[r, #[[2]] == Max[r[[All, 2]]] &]; Length[mx] == 1 && mx[[1, 1]] == 0]; Select[ Range[300], zmoQ] (* Harvey P. Dale, Jul 02 2019 *)
PROG
(PARI) is(n)=v=vector(n+1); for(d=1, n, t=(n%d)+1; v[t]=v[t]+1); nd=v[1]; for(i=2, n, if(v[i]>=nd, return(0))); 1 \\ Ralf Stephan, Oct 21 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Letsko, Oct 17 2013
STATUS
approved