OFFSET
1,6
COMMENTS
Conjecture: a(n) > 0 for all n > 3.
We have verified this for n up to 10^8.
We also have some similar conjectures, for example, any integer n > 3 not equal to 17 or 66 can be written as p + q with p and (p+1)*q/2 - 1 both prime.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588.
EXAMPLE
a(15) = 1 since 15 = 5 + 10 with 5 and (5+1)*10/2+1 = 31 both prime.
a(30) = 1 since 30 = 2 + 28 with 2 and (2+1)*28/2+1 = 43 both prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[(Prime[i]+1)(n-Prime[i])/2+1], 1, 0], {i, 1, PrimePi[n-1]}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 14 2013
STATUS
approved