

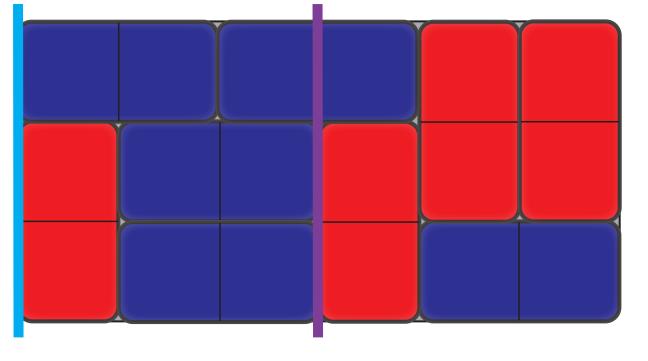
HISTORY

- The number of ways to tile a $1 \times n$ grid with monomoes (1×1) pie $(1 \times 2 \text{ pieces})$ is F_{n+1} and the number of ways to tile a $2 \times n$ grid F_{n+1} where F_n is the nth Fibonacci number [Bringham et al. 1996]
- Tiling $G \Box P_n$ (an $m \times n$ grid is $P_m \Box P_n$) and $G \Box C_n$ with a combination dominoes and squares (2×2 pieces) was counted in [Butler & O
- The number of ways to tile a $2 \times n$, $3 \times n$ and $4 \times n$ grid with square tiles covering an area of three square units has also been counte [Chinn et al. 2007].
- Consider the number of ways to tile a grid with pieces which cove This leads us to TETRIS[®], a popular video game that was develo gameplay involves placing a collection of 5 pieces covering four (tetrominos) into a 10×20 grid.

BASIC METHOD

Count the tilings by first relating the construction of a tiling to auxiliary graph. Since walks in a graph can be counted by tak the graph's adjacency matrix, we can then count such tilings entries in some appropriate matrix to a power. Example (Domino Tiling)

1. Consider a domino tiling of a $m \times n$ grid. Slice the board vertical points. There will be some dominoes spanning the slice and oth slice. Associate a 0, 1-array called the *crossing* with this slice. W bottom of the grid to the top, if a domino crosses the slice put a it is adjacent to the slice put a 0 in the crossing.



Cyan crossi Purple cross

Figure: 3×6 grid tiled with dominoes

- 2. We can consider all the possible ways to slice a $m \times n$ domino t all 0, 1-arrays of length m.
- 3. Consider the directed multigraph graph with crossings as vertice edge between crossing i and crossing j if i and j can appear col domino tiling. The number of the edges is determined by the nu i may appear. Consider the adjacency matrix A associated with

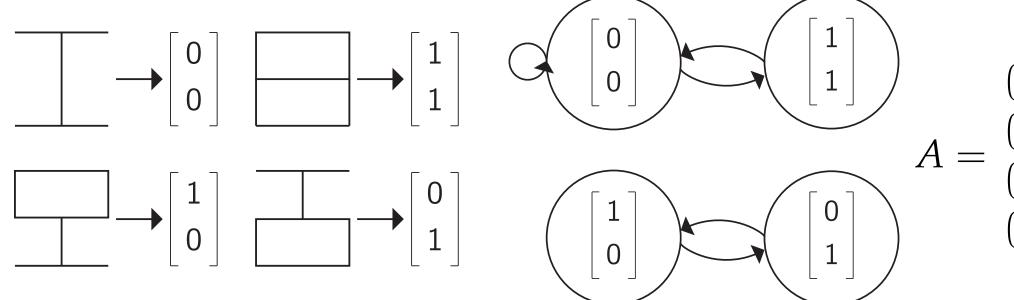


Figure: Crossings for $2 \times n$ grid tiled with dominoes

=

4. The number of ways to tile an $m \times n$ board is the number of walk beginning and ending at the vertex which has no spanning dominoes. Thus the number of such tilings is $(A^n)_{00}$.

Example :
$$A^6$$

TETRIS[®] Tiling Steve Butler¹, Jason Ekstrand¹ and Steven Osborne¹ Iowa State University, Ames, IA

			4
	THE ALGORITHM		
ieces) and dominos with dominoes is 5]. ion of monomoes, Osborne 2012]. ares and L shaped ed ver four square units. loped in 1984. The square units each	cross a vertic 2. Form a list of 3. For each cros 4. Build a spars possible cros	of ways to tile an $m \times n$	
Square units caen			
to a walk in an king powers of by reading off			
ally in between grid hers adjacent to the Working from the a 1 in the crossing, if			
sing: [0,0,0] ssing: [0,0,1]			
tiling by generating	DATA		
ces. There is an onsecutively in a umber of ways <i>i</i> and h this graph. $\begin{pmatrix} 0,0 \\ 1,1 \\ 0,0 \\ 1,0 \\ 0,1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	$\begin{array}{rrrr} 4 \times m \ {\rm grid} \\ \hline m & {\rm tilings} \\ \hline 1 & 1 \\ 2 & 4 \\ 3 & 23 \\ 4 & 117 \\ 5 & 454 \\ 6 & 2003 \\ 7 & 9157 \\ 8 & 40899 \\ 9 & 179399 \\ 10 & 796558 \\ 11 & 3546996 \\ 12 & 15747348 \\ 13 & 69834517 \\ 14 & 310058192 \\ 15 & 1376868145 \\ 16 & 6112247118 \\ \end{array}$	$6 \times m \text{ grid}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

16

17 0

4203065267122878

494232382069456694

6112247118

27132236455

120453362938 18

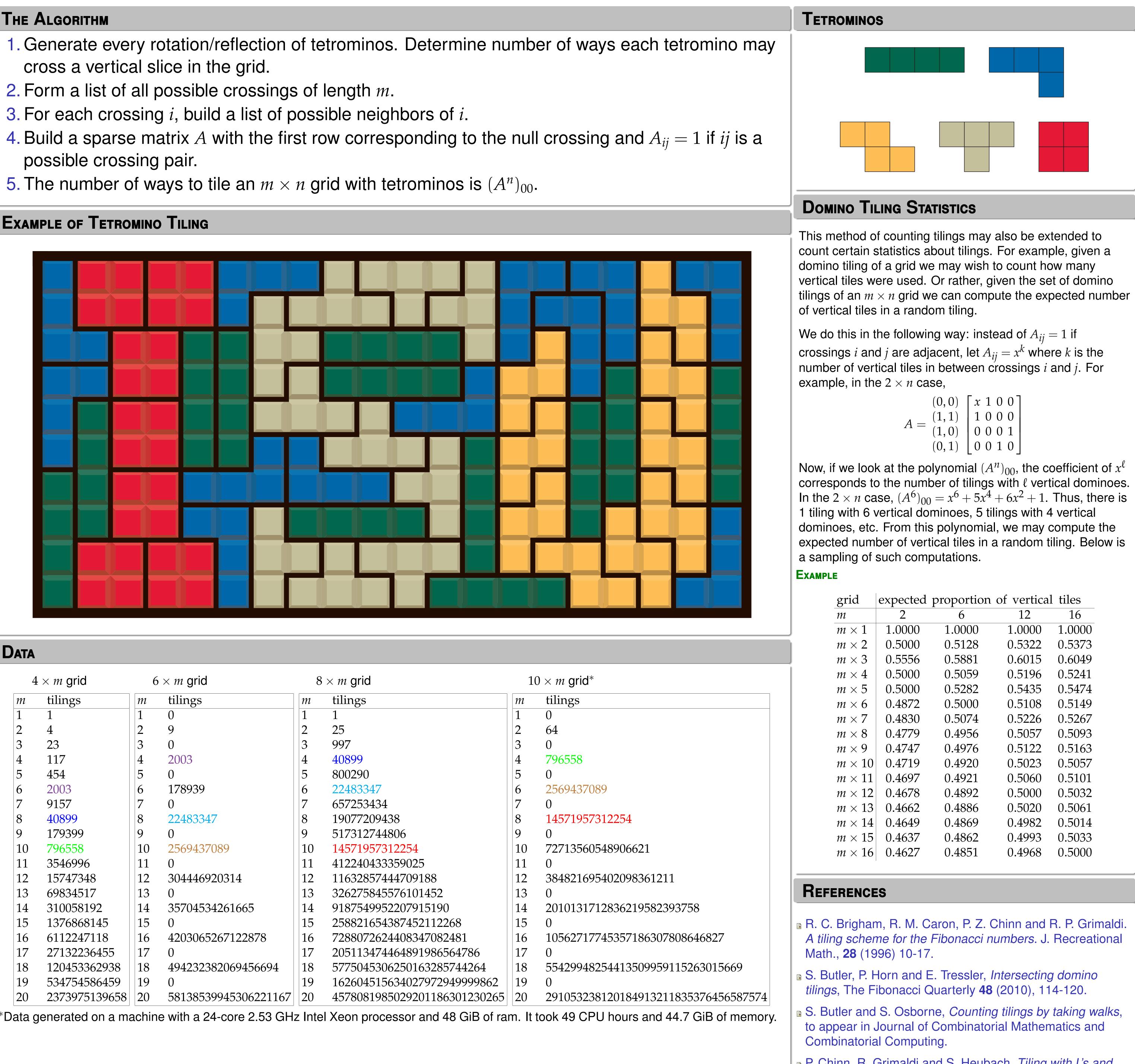
534754586459 19 0

16

16

18

19



$8 \times m$ grid	1	$0 \times m \text{ grid}^*$
tilings	т	tilings
1	1	0
25	2	64
997	3	0
40899	4	796558
800290	5	0
22483347	6	2569437089
657253434	7	0
19077209438	8	14571957312254
517312744806	9	0
14571957312254	10	72713560548906621
412240433359025	11	0
11632857444709188	12	384821695402098361211
326275845576101452	13	0
9187549952207915190	14	2010131712836219582393758
258821654387452112268	15	0
7288072624408347082481	16	10562717745357186307808646827
205113474464891986564786	17	0
5775045306250163285744264	18	55429948254413509959115263015669
162604515634027972949999862	19	0
4578081985029201186301230265	20	291053238120184913211835376456587574

P. Chinn, R. Grimaldi and S. Heubach. *Tiling with L's and* squares, Journal of Integer Sequences 10 (2007), article 07.2.8, 17 pp.