OFFSET
1,1
COMMENTS
Conjectures: (row 1) = A055496, (column 1) = A193507, and for each row r(k), the limit of r(k)/2^k exists. For rows 1 to 4, the respective limits are 1.569985..., 2.677285..., 8.230592..., 10.709142...; see Franklin T. Adams-Watters's comment at A055496.
The above conjecture row 1 = A055496 is true; additionally, row 2 = A065545; row 3 = A065546; the first 5 terms of row 6 are a contiguous subsequence of A064934; and column 1 = A194598. - Bob Selcoe, Oct 27 2015; corrected by Peter Munn, Jul 30 2017
The conjecture for column 1 is true iff A194598 and A193507 are equivalent. Is this the case? - Bob Selcoe, Oct 29 2015
Column 1 diverges from A193507 at A(14,1) = 113, a prime not in A193507. 113 is in column 1 as it does not follow a prime in a row: 107 follows 53 and 127 follows 59, the next prime after 53. - Peter Munn, Jul 30 2017
EXAMPLE
Northwest corner:
2 5 11 23 47 97 197
3 7 17 37 79 163 331
13 29 59 127 257 521 1049
19 41 83 167 337 677 1361
31 67 137 277 557 1117 2237
43 89 179 359 719 1439 2879
53 107 223 449 907 1823 3659
MATHEMATICA
seqL = 14; arr2[1] = {2}; Do[AppendTo[arr2[1], NextPrime[2*Last[arr2[1]]]], {seqL}];
Do[tmp = Union[Flatten[Map[arr2, Range[z]]]]; arr2[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr2[z], NextPrime[2*Last[arr2[z]]]], {seqL}], {z, 2, 12}]; m = Map[arr2, Range[12]]; m // TableForm
t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 26 2013
EXTENSIONS
Incorrect comment deleted and example extended by Peter Munn, Jul 30 2017
STATUS
approved