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A Synopsis of the Basics as Covered in CL-Chemy I and II 

  

The idea of the CL, or coefficient list, is that coefficients may assume diverse values over the course of an 

iterative procedure. In one preceding article, ‘CL-Chemy Transforms Fibonacci-type Sequences to Arrays’ 

(CL-Chemy I), the formula 
1 2 0 1

( ) ( ) ; 0, 1
n n n

c F b F F F F
 

     is generalized to 
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Where  and  are the lists  = [b1, b2… bi] and  = [c1, c2… cj]. 

 

A sequence φ (where  = the order of φ = LCM(i,j)) is generated by applying terms in  and  in order, 

according to the iteration being performed. So, at the 1st iteration, the initial F0 and F1 are multiplied by c1 

and b1 respectively. At the 2nd iteration, F1 and F2 are multiplied by c2 and b2; on the 3rd iteration c3 and b3 

apply, and so on. After  iterations, the cycle repeats. 

 

That generates the first sequence: to start with  = [b2, b3… bi, b1] and  = [c2, c3… ci, c1] generates the next. 

Permuting  and  cyclically generates  distinct sequences. In the context of an array, these sequences are 

aligned vertically and designated as S1, S2, S3 and so forth. Arrays are typically represented by Φ [][], 

with ,  and  in numerical form. 

 

Define Fn/Fn–1, for n  ∞, as a limit ratio. As a rule, each sequence in an array converges, simultaneously 

and in two directions, to  positive and  negative limit ratios. Formulas derived in CL-Chemy I operate on 

the elements of Φ to provide the coefficients of  different quadratic equations (Qj) that have roots 

corresponding to specific limit ratios. These sets of equations are called Q-sets. 

 

In the article CL-Chemy II: Reflections and Other Symmetries, inverting the order of the terms in  and  
created complementary Q-sets. Further investigation revealed unexpected crossover connections between 

the roots of equations in these sets. This paper follows up on the discovery that symmetrical inversions of 

certain  and  configurations allow roots from the two sets to combine as points on hyperbolic curves. 
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Symmetric Inversions 

 

Definition: A symmetric inversion Φ  Φ is symmetrical with respect to the order of terms in  and . 

That is, it directly inverts (reverses) the sequential order of the terms in each of the lists  and : 
 

   = [b1, b2… b]  [b , b1… b1]     = [c1, c2… c]  [c , c1… c1] 

 

For example: 
 

Φ3 [1,2,3][1,2,3] S1 S2 S3  Φ3 [3,2,1][3,2,1] S1 S2 S3 

F4 
14/18 

15/6 
11/12   14/6 

11/18 
15/12 

F 
4/6 

9/6 
4/6   8/6 

3/6 
6/6 

F2 
2/6 

3/3 
1/2   2/2 

1/3 
3/6 

F1 
1/3 

1/1 
1/2   1/1 

1/3 
1/2 

F0 0 0 0   0 0 0 

F1 1 1 1   1 1 1 

F2 1 2 3   3 2 1 

F 4 9 4   8 3 6 

F4 15 11 14   11 15 14 

F5 19 40 54   57 36 20 

F2 68 153 168   136 51 102 

 

Table 1: Symmetric inversion of Φ3 [1,2,3][1,2,3] 

 

An equation that uses terms from this array to construct quadratic equations (Qj) is stated below. The zeros 

(roots) of these Qj are the limit ratios to which the quotients Fn/Fn–1 in table 1 columns converge. 

 

 2
, , , ,( )j j j k j k j k j j kQ F x F F c x F c               (1.1) 

Now (1.1) applies to table 1 sequences to create the equations in table 2 (color-coded for future reference). 

We’ll call these two sets of three equations, Q-sets. (The order of the last two Qj in the set to the right has 

been reversed, so as to have Qj with identical c coefficients on the same line.)  

 
2

1 1 1
4 13 9Q x x       

2

1 1 1
8 5 9Q x x    

2

2 2 2
9 5 8Q x x       

2

2 2 2
6 11 8Q x x    

2

3 3 3
4 11 12Q x x       

2

3 3 3
3 13 12Q x x    

 

Table 2: Qj and Qj coefficients as derived from the columns in table 1 

 

Next is a demonstration of how roots of these equations combine as points on the hyperbolic curve in figure 

1, below. It is instructive to examine a simple case first. 

mailto:ixitol@yahoo.com
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Consider the equation Q = ax2 + bx + c. Let a = 1 and b = c. Then two formulas that equate the roots of this 

equation, r+ and r– to its coefficients will combine as below to create a third formula: 
 

i) ii) iii) 0r r b r r c r r r r
       
          

 

A more familiar rendition of iii is 

 

 0xy x y    (1.2) 

 

Thus the roots of, say, Q = x2 – x – 1 will combine to identify two points, in black on the graph of (1.2), 

in figure 1 below. (Roots equate in turn to both x and y; hence, two points per pair.) 

 

 

 
 

Figure 1: Quadratic roots combine as points on a hyperbola 

 

The graph of (1.1) is hyperbolic, comprising curved lines that are mirror images, symmetrical with respect 

to two diagonals. One passes through the origin at (0,0) and a perpendicular intersects that at (–1,–1). Call 

the curved line that transits the origin l1 and the other l2. Of the various points that are marked on l1; those 

black in color are, again, the roots of Q . We’ll see now how the others are derived. 

 

When a quadratic with b = c has real roots, points on l1 or l2 are identified. For b ≠ c, it will be seen that, in 

general, a pair of equations is required, and a root from each, taken in combination, identifies a point on 

the hyperbola. Although  =  in table 1, table 2 equations’ roots must pair up for a point on (1.2). 

 

For example, take the equations atop table 2, Q1 and Q1. 4x2 – 13x – 9 has roots r1+ = 3.8365, r1– = –0.5865; 

8x2 – 5x – 9 has roots r1+ = 1.4182, r1– = –0.7932. Then in (1.2), 3.8365(–0.7932) + 3.8365 –0.7932 = 

1.4182(–0.5865) + 1.4182 –0.5865 = 0. These numbers locate the four red dots in figure 1. 

 

A symmetry identified earlier in the graph of (1.1) is now used to map points from l1 to l2. Since x = y at 

both (0,0) and (–2,–2), this entails adding 2 to each root and reversing its sign. Thus to map the black dots 

to l2, take (1.618 + 2)(–1) = –3.618 and (–0.618 + 2)(–1) = –1.382. Multiplying (x + 3.618)(x + 1.382) then 

gives the coefficients of a new equation: x2 + 5x + 5. 
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Adapted, this procedure also maps the colored dots to l2 and gives the equations below. 

 
2

1 1 1
4 29 33Q x x        

2

1 1 1
8 37 33Q x x     

2

2 2 2
9 41 38Q x x        

2

2 2 2
6 35 38Q x x     

2

3 3 3
4 27 26Q x x        

2

3 3 3
3 25 26Q x x     

 

Table 3: Quadratics built on roots reflected to l2 

 

There are now, in table 3, two more sets of three equations, each with integer coefficients. The roots of 

these reside, a 
2 4b ac   root paired with its complementary 

2 4b ac  , on the line l2. Based on the 

structure of this mapping algorithm, it seems appropriate to identify equations with roots on l1 as primary, 

and those with roots on l2 as secondary or reflected. 

 

Certain attributes of the primary Qj are unchanged by mapping l1 roots to l2; e.g., the a coefficients, their 

shared discriminant and so forth. Some reasons for this will become clearer later on. 

 

The procedure so far: CLs (coefficient lists) in a generalized Fibonacci sequence formula generate sets of 

sequences that are aligned in an array. Now, given  =  (within certain constraints to be referred to later), 

symmetrically inverting their terms gives another, closely related array. Then the formula (1.1) applies to 

find coefficients of equations that have roots to which the ratios of adjacent terms in the sequences converge. 

These equation form two sets, where Qj roots combine with roots of a Qi as points on a hyperbolic line. 

 

Then, as just observed, the roots on l1 can be mapped to l2, and coefficients for two new sets of equations 

derived from that. So, in sum, these procedures require us to: 1) construct the arrays Φ and Φ; 2) derive 

the coefficients for the primary equations Qj and Qi; 3) map those roots to l2, and then 4) find coefficients 

for two sets of secondary equations from these roots. Can a more direct method be found? 

 

Quadratic Coefficient Matrices 

 

Remarkably, a shortcut exists that obviates all of this, save construction of one array and a solitary Q-set. 

The Qj coefficients are configured as a matrix, and a set of transforms finds the related sets from that. 

 

To derive the first transform matrix, let coefficients of table 2 equations be arrayed in two 3x3 matrices M 

and M as below. The operation M-1 · M = M-1 · M produces, as a ‘quotient’, a matrix (T1) that transforms 

one to the other: i.e., M · T1 = M and M · T1 = M. 

 

 

1

1

4 13 9 8 5 9 1 0 0

9 5 8 6 11 8 1 1 0

4 11 12 3 13 12 1 2 1

T



   

        

   

     
     
     
     
     

 

 

For the Qj' with roots that identify points on l2, matrix M' is fashioned from the coefficients at the left side 

of table 3. Then M-1 · M' = T2, the transform matrix at the right below: 

 

 

1

2

4 13 9 4 29 33 1 4 4

9 5 8 9 41 38 0 1 2

4 11 12 4 27 26 0 0 1

T



 

      

 

     
     
     
     
     
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Finally, M-1 · M' finds the last of the four transforms to complete the group below: 

 

 
2 30 1

1 0 0 1 0 0 1 4 4 1 4 4

0 1 0 1 1 0 0 1 2 1 3 2

0 0 1 1 2 1 0 0 1 1 2 1

T T T T          

       
       
       
       
       

 

 

These T-matrices are isomorphic by matrix multiplication to the Klein four-group. Now, in theory, we need 

to construct (according to conditions on  and ) but one array to find all of the related Q-set coefficients. 

Since an M created on Q coefficients has three columns, and Tn has three rows, they are conformal and 

thus Tn works for all   ≥ 1. For two such examples, take matrices built on coefficients of the Φ2 [1,2][1,2] 

and Φ4 [1,2,3,4][1,2,3,4] Q-sets, and apply the transforms. 

 

 
2 31

1 3 2 2 1 2 1 7 8 2 9 8

2 1 2 1 3 2 2 9 8 1 7 8
M M T M T M T

   
      

   

       
       
       

 

 

 

2 31

44 21 38 27 55 38 44 197 180 27 164 180

19 55 54 20 53 54 19 131 132 20 133 132

18 53 60 11 67 60 18 125 118 11 111 118

15 67 44 38 21 44 15 127 150 38 173 150

M M T M T M T      

   

   

   

   

       
       
       
       
       
       

 

 

Let’s try a sample pair to be sure we’re on track: the r+ root of 18x2 + 125x + 118 is –1.1268… and 11x2 + 

111x + 118 has an r– root of –8.8833… These numbers zero out in (1.2) and identify two points on l2. 

 

These transform matrices simplify things considerably; yet they properly apply only to a specific case (i.e., 

k = 1) of the more general version of (1.2) below: 

 

 0kxy x y     (1.3) 

For an example, let k = 2: then matrices constructed on Φ3 [2c1,2c2,2c3][c1,c2,c3] coefficients have roots on 

2xy + x + y. The transforms (T') that work for these matrices are juxtaposed above the originals below. 

 

 
2 30 1

1 0 0 1 0 0 1 2 1 1 2 1

0 1 0 2 1 0 0 1 1 2 3 1

0 0 1 4 4 1 0 0 1 4 4 1

T T T T             

       
       
       
       
       

 

 

2 30 1

1 0 0 1 0 0 1 4 4 1 4 4

0 1 0 1 1 0 0 1 2 1 3 2

0 0 1 1 2 1 0 0 1 1 2 1

T T T T          

       
       
       
       
       

 

 

Strangely, the T-matrices themselves seem to have undergone transformations, where 1 and 2 have swapped 

places and all three are rotated by 180º. Generalizing these transforms clears this up. We’ll see that T1 and 

T2 have an inverse relationship. One shrinks as the other grows and, together, these matrices model both 
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the curvature of kxy + x + y and the distance between its lines. (I.e., note that the absolute value of both x 

and y at the apex of l2 is 2/k.) Setting k as an upper index, the set of generalized T-matrices that transform 

a matrix built on coefficients in the set Q derives, heuristically, as: 

 

 

2 2

2 2

0 1 2 3

1 0 0 1 0 0 1 4 4 1 4 4

0 1 0 1 0 0 1 2 3 2

0 0 1 2 1 0 0 1 2 1

k k k

k k k k

T T k T k T k k

k k k k

          

      
      
      

              

 

 

Table 4: The generalized transformation matrix set 

 

As a check, these table 4 T-matrices too are isomorphic to the Klein group. 

 

Another Q-set example uses M composed of coefficients of λ = 3 equations with roots on 3xy + x + y = 0. 

 

 

20 183 57 1 0 0 56 159 57

57 159 56 3 1 0 30 177 56

28 177 60 9 6 1 19 183 60

M M M

   

         

   

     
     
     
     
     

  

 

4 4 4 4
3 9 3 9

2 2
3 3

1 180 1887 665 1 504 2103 665

0 1 513 2115 678 3 3 270 1953 678

0 0 1 252 1929 634 9 6 1 171 1875 634

M M M M        

       
        
       
       
       

 

 

Table 5: 

 

Note that clearing the fractions makes for larger coefficients in M' and M'. As a check on the transforms, 

solve 180x2 + 1887x + 665 for roots –0.3651 and –10.1182, and 504x2 + 2103x + 665 for the roots –0.3447 

and –3.8279. Then 3(–10.1182)(–0.3447) – 10.1182 – 0.3447 = 0. 

 

The Mechanics of the Transform Matrices 
 

Yet it turns out that arrays, Q-sets and all that don’t matter: a T-matrix works on any 3-column matrix M 

(but zeros in M can give strange results). Random matrices are generated below to see what comes of it… 
 

 
1 1

12 14 13 11 12 13 8 7 3 2 13 3

2 1 6 3 11 6 8 4 25 29 46 25

4 24 13 33 50 13 2 13 15 30 43 15

15 23 19 27 61 19 21 15 7 29 1 7

22 14 17 19 20 17 22 13 23 32 33 23

T T

   

          

       

      

       

      
      
      
      
      
     
     
      







 
 



  

 

Table 6: Two 5x3 random matrices transformed by T1 
 

We encounter something different at once; i.e., the top equation 12x2 + 14x + 13 has (conjugate) complex 

roots; r+ = −0.5417 + 0.9345i and r– = −0.5417 − 0.9345i. As expected, roots of 11x2 + 12x + 13 are complex 

and conjugate as well; r+ = −0.5833 + 0.8620i and r– = −0.5833 − 0.8620i. These imaginary components 
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notwithstanding, the complementary roots combine as usual as solutions to xy + x + y = 0. But how are pairs 

such as these to be graphed as points on a line or surface? 

 

The next example is also unusual, in that the roots of 2x2 – x – 6 combine with –3x2 – 11x – 6 roots in two 

ways. That is, the roots 2 and –0.6666 identify a point on l1, but –3 and –1.5 are points on l2. The roots of 

equations that T2 and T3 return have the same pattern.  

 

Other variants likely await in these and other random examples, but rather than work more table 6 pairings, 

let’s examine the mechanics of matrix multiplication to try to fathom the why of it. E.g., take the equation 

ax2 + bx + c. Part of the mystery vanishes when we see (a b c)  T1 multiplied out. 

 

      

1 0 0

1 1 0 (1) ( 1) (1) ( 1) (2) (1)

1 2 1

2 )a b c a b c b c c a b c c b c        

 
     
 
 
 

  

 

Figure 2: The mechanics of the T1 transform 
 

Figure 2 illustrates the T1 mechanism, but it is still astonishing that this simple shuffle of a Q’s coefficients 

creates a Q with these peculiar complimentary properties inherent to its roots. For k = 1, T1 is now passé, 

superfluous, old news: just put a, b and c into the a = a – b + c, b = 2c – b, c = c formulas and we’re done.  

 

For the general equation set, let M = (a b c) and multiply it in turn by the 
k

nT in table 4. 

 

 

   

 

2

21 2

2

23

4 4 2) : 2 ) :

4 4 2) : 3 2

k k

k

a a bi M T ck bk a ck b c ii M T a b c
k kk

a a biii M T ck bk a b ck c
k kk

         

       

  

 

Figure 3: Coefficients for equations with roots as points on kxy + x + y = 0 

 

Given any standard quadratic Q, the coefficients in figure 3 find roots that combine and reflect to zero out 

in kxy + x + y = 0 (1.3). If Q’s roots are real, the +/– complements combine as points on (1.3)’s lines. 

  

To review, arrays such as found in table 1, or sets of equations such as those in tables 2 and 3, are no longer 

needed to generate these particular root pairings. We can now choose any combination of real, imaginary 

or complex numbers for a, b and c, and drop them directly into figure 3 formulas. 

 

While our carefully-crafted Q-sets and T-matrices are no longer requisite for finding root-pairs and points, 

they were nonetheless vital as a way into this exploration. As we seek our bearings in this newfound, infinite 

sea of interconnections, perhaps they may still serve to provide a certain order to the inquiry. Since Q-set 

roots are so closely linked, maybe their relationships will translate to unique geometric patterns in the plane 

of the hyperbola. At present, they are as waypoints on a near-empty chart, islands and reefs in an endless 

ocean of random choices. It remains to be seen what other landfalls will loom on this course as this odyssey 

continues… 

 

Going forward, the scope of this venture expands as rotations and reflections of xy + x + y = 0 extend these 

procedures into other areas of the plane. 



 7 

Some Symmetries of xy + bx + cy = 0 
 

The patterns next to be considered are brought into evidence as the equation in (1.2) is generalized to: 

 

 0xy bx cy    (1.4) 

 

In the interests of symmetry and simplicity, b and c values are allowed to be either of ±1. Hence, there are 

four variants of (1.4) to consider: 

 

xy + x + y  xy – x – y xy – x + y xy + x – y 

 

These equations correlate by color to the hyperbolas H1, H2, H3 and H4 in the graph below: 

 

 
 

Figure 4: Reflections and rotations of xy + x + y 
 

To generate points on H2, let k take negative values in
k

nT matrices and/or coefficient formulas in figure 3. 

 

To find T-matrices that translate H1 points to H3, and H4 (and to generalize figure 3 formulas to map these 

root pairs to all of the figure 4 lines) we again use the matrix M formed on the coefficients of the Q-set on 

the left in table 2: 

 

 

4 13 9

9 5 8

4 8 12

M

 

  

 

 
 
 
 
 

  

The equations in M are now solved and the roots fed into xy + x – y. E.g., 4x2 – 13x – 9, has roots 3.8365r

  

and 0.5865r

  . Then 0r r r r

   
      gives –1.3526r


   and similarly for – 0.3697r


  . 

 

Then ( )( )x r x r
 
    = 18x2 + 31x + 9 and we have the top line of a new coefficient matrix. To continue 

this process with the next two rows of M gives the matrix M' below. 
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18 31 9

4 21 8

19 35 12

M  

 
 
 
 
 

  

A transform matrix T4 is found by M–1  M'. Next, 0r r r r
   

      and 0r r r r
   

      could be 

solved on M’s roots to find a second set of roots  This process, repeated, gives three rows of M'' and the 

operation M–1  M'' finds a second transform matrix, T5. But to derive T5 by use of M'–1  M is much easier. 

The two new transforms are on the left below, and generalized on the right simply by applying these signage 

patterns to the original 1 .kT  

 

 4 5 4 5

2 2

1 0 0 1 0 0 1 0 0 1 0 0

1 1 0 1 1 0 1 0 1 0

1 2 1 1 2 1 2 1 2 1

, ,k k
T T T k T k

k k k k

   

         

         

       
       
       
       
       

  

Multiplying (a b c) by the transforms gives the coefficient sets iv) = 
2

( 2 )ck bk a ck b c       and 

v) = 
2

( 2 )ck bk a ck b c     . We’ll see later that k < 0 reverses the signs of the k > 0 roots, and so 

further reflects points on H3, and H4. With these six transforms, is the set for kxy ± x ± y complete? 

 

A Distinguishing Property of Transforms Defined 

 

One thing that all equations that are products of these transforms have in common is the discriminant (D). 

A potentially interesting avenue of research tries to identify all possible operations on and/or combinations 

of (a b c) such that the roots of equations created by transforms will have the same discriminant as the initial 

ax2 + bx + c. For a look into that… 

 

Note that certain symmetries of T1 compose the elements of the dihedral group D3. 

 

 

1 0 0 0 0 1 1 0 0 1 2 1 1 2 1 0 0 1

0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1

0 0 1 1 0 0 1 2 1 0 0 1 1 0 0 1 2 1

       

           
           
           
           
           

 

 

Table 7: The dihedral group D3 represented as reflections and a composition of reflections of T1 

 

 

2 2

2 2

1 0 0 0 0 1 1 0 0 1 2 2 1 0 0 1

0 1 0 0 1 0 1 0 0 1 1 0 0 1

0 0 1 1 0 0 2 1 0 0 1 1 0 0 1 2

k k k k

k k k k

k k k k

       

          
          
          

          
          

  

Table 8: Elements of table 7 generalized as reflections and a composition of reflections of 
1

k
T  

 

Here is another set of six transforms of some kind. Is there a geometrical object, analogous to kxy ± x ± y, 

upon which the roots generated by these transforms will lie? For k > 1, table 8 matrices don’t always interact 

as members of a group, i.e., multiplication often creates new forms. But, again, in numerous trials with 

diverse, even complex arguments, D is invariant. That is, the discriminant of the original equation upon 

which the transforms work never grows or otherwise changes. 
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The focus now is on a property that all transform matrices identified so far have in common: they conserve 

D. To sharpen the focus, let a transform matrix (T-matrix or transform) be defined by the property that it 

changes a quadratic equation’s coefficients in a way that D itself is immutable. A question then is, how/why 

does this happen? To assist this inquiry, the transforms are represented in the form of quadratic equations 

below. The first six equations are created by T-matrices of the original set, and the next are from the dihedral 

group transforms. 

 

 

2

0

2 2

1

2

22

2 2

23

2 2

4

2 2

5

( ) (2 )

4 4 2( )

4 4 2( ) ( 3 2 )

( ) ( 2 )

( ) (2 )

k

k

k

k

k

T ax bx c

T ck bk a x ck b x c

a a bT ax b x c
k kk

a a bT ck bk a x b ck x c
k kk

T ck bk a x ck b x c

T ck bk a x ck b x c

  

     

     

        

       

      

  

 

2

0

2

2 2

1

2

1

2 2

6

2

7

2

2

( ) (2 )

(2 )

(a ) (2 )

(2 )

k

R

k

k

R

k

k

T ax bx c

T cx bx a

T ck bk a x ck b x c

T ax ak b x ak bk c

T k bk c x ak b x a

T cx ck b x ck bk a

  

  

     

     

     

     

  

 

These 12 examples are a set of 10 unique transforms and equations. The 10 matrices can be paired (allowing 

repetition) in 55 ways. In trials, some matrix multiplications create a new matrix, and taking some to higher 

powers. e.g., 
4

( ) ,k n
T  generates new examples as well. Can it be proved that such products/powers are 

always another T-matrix? Other efforts to enlarge the inventory, such as rotating T1 in 90 increments have 

failed. Among the obvious questions that arise here is: in theory, how many such transforms can exist? If 

the powers of a T-matrix are taken as separate entities, then there are infinitely many examples, but 

classification systems could narrow it down to a number of types. If what follows doesn’t offer any deep 

insights into this question, it at least affords a somewhat different approach. 

 

Recall that D of ax2 + bx + c is b2 – 4ac. With transforms expressed as quadratic equations, coefficients can 

be inserted into the quadratic formula. E.g., 
1

k
T gives 

2
( ), (2 ), .ck bk a b ck b c ca       Working ‘by 

hand’, the formula puts 
22

(2 ) ( )4ck b ck bk a c    under the radical. Expanding and collecting terms 

returns b2 – 4ac. 

 

In computer trials, as these typically bulky coefficients are inserted into quadratic equations, roots returned 

are sometimes so complicated that it takes a bit of searching just to find the radical. But there, tucked under 

it, naked and nonchalant, is b2 – 4ac… 

 

Let the size of the set of transforms question be restated in terms of Q’s coefficients: given a, b and c, what 

arrangements, combinations, permutations and sign changes will leave D unaffected? Is this a broader 

version of the original question; i.e., are there any such forms that a T-matrix won’t produce? 
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Epilog 
 

As this excursion winds to a close, a rich history informs the journey. The story of efforts, circa 1500, to 

find the roots of polynomials in terms of their coefficients is well known. Inspired initially by the quadratic 

formula, this quest led, amid other discoveries, to the theory of groups. After all these centuries, it’s amazing 

to see another way in which quadratic coefficients, roots and groups are so closely connected. Given what 

came of that earlier investigation, the potential for seminal discoveries in this area looks strong… 

 

 

 

Problems: 

 

 Provide formal proofs of the important steps in the foregoing procedures. 

 

 Given complex values for x, y and/or k, find graphic representations of kxy + x + y = 0. 

 

 Letting k vary continuously, animate the motion of points such as those in figure 1.  

 

 Describe the conditions required on  and  to ensure that equations taken from arrays created by 

symmetric inversions have a common discriminant. 

 

 Identify all possible transforms on quadratic coefficients that conserve the discriminant, and prove 

that the list is complete. 

 

 Generalize these reflective functions to work for polynomials of higher degree. 

 

 Identify any unique relationships that exist between roots generated by the D3 transform group. 
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Addenda 
 

It seems likely that a few OEIS candidate sequences can be found around here… one approach is to apply

2
,

k
T  k = 1,2,3…, to the coefficients of x2 – x – 1, and clear the fractions. Table 9 shows results for k = 1..20.  

 
k =   a  b  c  a+b+c 

20   100  120  –89  131 

19   361  437  –319  479 

18   81  99  –71  109 

17   289  357  –251  395 

16   64  80  –55  89 

15   225  285  –191  319 

14   49  63  –41  71 

13   169  221  –139  251 

12   36  48  –29  55 

11   121  165  –95  191 

10   25  35  –19  41 

9   81  117  –59  139 

8   16  24  –11  29 

7   49  77  –31  95 

6   9  15  –5  19 

5   25  45  –11  59 

4   4  8  –1  11 

3   9  21  1  31 

2   1  3  1  5 

1   1  5  5  11 

 

Table 9: 
2

k
T applied to the coefficients of x2 – x – 1 

 

The sequences in the a and b columns are already listed. The a column terms are A168077. (Note that this 

sequence is also generated as the square of an in A026741; we’ll encounter this latter sequence again soon.) 

The b column in table 9 is the sequence A171621; dividing every 4th term by 4 gives A061037. 

 

The c column’s 5,1,1,–1,–11,–5,–31… are now entered in the OEIS as A229526. Note that the sum of a, b 

and c in a row n is the c coefficient in row n + 4 with the sign reversed (A229525). 

 
k =   a  b  c  a+b+c 

1/13   13  689  8777  9479 
1/12   6  294  3451  3751 
1/11   11  495  5315  5821 
1/10   5  205  1996  2206 
1/9   9  333  2909  3251 
1/8   4  132  1021  1157 
1/7   7  203  1367  1577 
1/6   3  75  430  508 
1/5   5  105  497  607 
1/4   2  34  127  163 
1/3   3  39  107  149 
1/2   1  9  16  25 

1   1  5  5  11 

 

Table 10: 
2

k
T applied to x2 – x – 1 coefficients with fractional arguments for k 

http://oeis.org/
http://oeis.org/A168077
https://oeis.org/A026741
http://oeis.org/A171621
https://oeis.org/A061037
http://oeis.org/
https://oeis.org/A229526
https://oeis.org/A229525
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2

k
T  applies again in table 10, where k takes fractional values; 1,1/2,1/3…1/n. The initial coefficients are once 

more (1 –1 –1); fractions in the coefficients are cleared: 

 

The a coefficients in table 10 (A026741) are the square roots of a coefficients in table 9. It’s interesting 

that fractional arguments in k should have that effect. Such other mathematical relationships as may exist 

between the coefficients in these two tables are not so obvious… 

 

For 
1

k
T  and (1 –1 –1), k = 1,1/2,1/3…1/n gives a series of (cleared) coefficients where the sum of terms in 

row n = the a coefficient in row n – 1 (A002061). Perhaps reference to the sum of i, ii and iii in figure 3 

will show why this happens. Given the same k and (1 –2 –3), 
2

k
T generates cleared coefficient sets that sum 

to –2,–13,–32,–59,–94…, the terms in A185950 with the signs reversed. And so on… 

 

Since we’re at it, note the symmetries of
4

k
T and 

5

k
T , the last two transforms from the first set. 

 

4

k
T       

5

k
T  

a+b+c  a  b  c   k =   a  b  c  a+b+c 

55  41  13  1   6   29  –11  1  19 

41  29  11  1   5   19  –9  1  11 

29  19  9  1   4   11  –7  1  5 

19  11  7  1   3   5  –5  1  1 

11  5  5  1   2   1  –3  1  –1 

5  1  3  1   1   –1  –1  1  –1 

1  –1  1  1   0   –1  1  1  1 

–1  –1  –1  1   –1   1  3  1  5 

–1  1  –3  1   –2   5  5  1  11 

1  5  –5  1   –3   11  7  1  19 

5  11  –7  1   –4   19  9  1  29 

11  19  –9  1   –5   29  11  1  41 

19  29  –11  1   –6   41  13  1  55 

 

Table 11: 
4

k
T and 

5

k
T apply to (1,– 1,– 1) with k = –6..6 
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