[go: up one dir, main page]

login
A228924
Irregular triangular array read by rows: T(n,k) is the number of derangement permutations of [n] that have exactly k inversions; n>=2, 1<=k<=binomial(n,2) for even n, 1<=k<=binomial(n,2)-1 for odd n.
2
1, 0, 2, 0, 1, 4, 1, 2, 1, 0, 0, 4, 8, 4, 10, 10, 6, 2, 0, 0, 1, 12, 18, 16, 35, 44, 47, 40, 25, 14, 8, 4, 1, 0, 0, 0, 6, 32, 44, 60, 118, 160, 208, 244, 244, 214, 174, 140, 104, 64, 30, 10, 2, 0, 0, 0, 1, 24, 83, 118, 206, 388, 565, 802, 1068, 1308, 1466, 1508, 1479, 1414, 1290, 1076, 806, 544, 333, 186, 96, 46, 19, 6, 1
OFFSET
2,3
COMMENTS
Row sums = A000166.
Sum_{k>=1} T(n,k)*k = A216239(n).
Sum_{even k} T(n,k) = A003221(n) and Sum_{odd k} T(n,k) = A000387(n).
It would be nice to have a closed formula for T(n,k). - Alois P. Heinz, Dec 31 2014
LINKS
EXAMPLE
Triangle T(n,k) begins:
1;
0, 2;
0, 1, 4, 1, 2, 1;
0, 0, 4, 8, 4, 10, 10, 6, 2;
0, 0, 1, 12, 18, 16, 35, 44, 47, 40, 25, 14, 8, 4, 1;
...
MATHEMATICA
Map[Distribution[#, Range[1, Max[#]]]&, Table[Map[Inversions, Derangements[n]], {n, 2, 6}]]//Grid
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Sep 08 2013
STATUS
approved