OFFSET
1,2
COMMENTS
(y^2 + 2*x*y - x^2)^4 + (2*x + y)*x^2*y*(2*x + 2*y)^4 = (x^4 + y^4 + 10*x^2*y^2 + 4*x*y^3 + 13*x^3*y)^2. The equation implies that for any n, x^4 + a(n)*y^4 = z^2 is solvable in integers.
REFERENCES
L. E. Dickson, History of the Theory of Numbers, Vol. II. Diophantine analysis, Carnegie Institute of Washington, 1919. Reprinted by AMS Chelsea Publishing, New York, 1992, p. 631.
MATHEMATICA
n = 1008; limx = Floor[(n/2)^(1/3)]; limy = Floor@Sqrt[n]; Select[Union@Flatten@Table[x^2*y*(2*x + y), {x, 0, limx}, {y, limy}], # <= n &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Arkadiusz Wesolowski, Sep 11 2013
STATUS
approved