[go: up one dir, main page]

login
A228135
Smaller of two consecutive semiprimes which are anagrams of each other.
1
278, 1945, 2545, 4045, 5389, 9134, 9289, 12634, 17678, 23578, 25034, 25178, 27289, 32245, 32689, 34889, 35078, 40234, 42289, 47578, 47789, 48979, 50579, 51434, 51589, 55534, 55634, 55934, 57289, 57779, 69334, 69478, 70178, 70234, 71945, 71989, 72134, 76345
OFFSET
1,1
COMMENTS
Given the n-th semiprime, it is occasionally possible to form the (n+1)-th semiprime using the same digits in a different order.
"Anagram" means that both semiprimes must not only use the same digits but must use each digit the same number of times.
EXAMPLE
278 and 287 are two successive semiprimes.
MAPLE
with(numtheory):T:=array(1..50000):k:=0:for i from 1 to 200000 do:if bigomega(i)=2 then k:=k+1:T[k]:=i:else fi:od:for n from 1 to k-1 do:p1:=T[n]:p2:= T[n+1]:pp1:=convert(p1, base, 10): pp2:=convert(p2, base, 10):n1:=sort(pp1):n2:=sort(pp2): if n1=n2 then printf(`%d, `, p1):else fi:od:
MATHEMATICA
range[n_Integer]:=Select[Range@n, PrimeOmega@#==2&];
anagramQ[l_List]:=(l1=Sort@#&/@IntegerDigits@l; l1[[1]]==l1[[2]]);
Select[Partition[range@100000, 2, 1], anagramQ]\[Transpose]//First (* Hans Rudolf Widmer, Oct 06 2021 *)
CROSSREFS
Sequence in context: A252249 A257368 A056995 * A188446 A251624 A062384
KEYWORD
nonn,base,less
AUTHOR
Michel Lagneau, Aug 12 2013
STATUS
approved