[go: up one dir, main page]

login
A228123
Number of primes generated from Euler's polynomial x^2 + x + 41 from x = 1 to 10^n.
2
1, 10, 86, 581, 4148, 31984, 261080, 2208196, 19132652, 168806740, 1510676802
OFFSET
0,2
FORMULA
a(n) = A331876(n) - 1. - Amiram Eldar, Sep 23 2023
EXAMPLE
a(4) = 4148 because the number of primes generated from Euler's polynomial x^2 + x + 41 from x = 1 to 10^4 are 4148.
MATHEMATICA
a = 0; n = 1; t = {}; Do[If[PrimeQ[x^2 + x + 41], a = a + 1]; If[Mod[x, n] == 0, n = n*10; AppendTo[t, a]], {x, 1, 1000000000}]; t
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Shyam Sunder Gupta, Aug 11 2013
EXTENSIONS
a(10) from Amiram Eldar, Sep 23 2023
STATUS
approved