[go: up one dir, main page]

login
A227899
Number of primes p < n with 3*p - 4 and n^2 + (n - p)^2 both prime.
3
0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 2, 1, 2, 3, 2, 3, 3, 2, 3, 2, 3, 1, 1, 3, 2, 4, 2, 3, 3, 3, 4, 1, 2, 6, 2, 4, 2, 3, 5, 4, 2, 3, 4, 4, 4, 4, 2, 1, 2, 4, 2, 4, 2, 6, 7, 5, 3, 3, 9, 2, 3, 3, 2, 4, 4, 3, 1, 2, 8, 3, 6, 2, 2, 8, 4, 7, 2, 2, 5, 2, 3, 3, 2, 8, 3, 3, 1, 4, 7, 5, 9, 2, 2, 5
OFFSET
1,8
COMMENTS
Conjecture: a(n) > 0 for all n > 3.
LINKS
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588.
EXAMPLE
a(5) = 1 since 5 = 3 + 2, and the three numbers 3, 3*3 - 4 = 5 and 5^2 + (5-3)^2 = 29 are all prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[3Prime[i]-4]&&PrimeQ[n^2+(n-Prime[i])^2], 1, 0], {i, 1, PrimePi[n-1]}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 14 2013
STATUS
approved